]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/LAMBDA-TYPES/Level-1/LambdaDelta/aplus/props.ma~
9f259df79aff21984bb5f1eb15a349076c63ba96
[helm.git] / helm / software / matita / contribs / LAMBDA-TYPES / Level-1 / LambdaDelta / aplus / props.ma~
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/aplus/props".
18
19 include "aplus/defs.ma".
20
21 theorem aplus_reg_r:
22  \forall (g: G).(\forall (a1: A).(\forall (a2: A).(\forall (h1: nat).(\forall 
23 (h2: nat).((eq A (aplus g a1 h1) (aplus g a2 h2)) \to (\forall (h: nat).(eq A 
24 (aplus g a1 (plus h h1)) (aplus g a2 (plus h h2)))))))))
25 \def
26  \lambda (g: G).(\lambda (a1: A).(\lambda (a2: A).(\lambda (h1: nat).(\lambda 
27 (h2: nat).(\lambda (H: (eq A (aplus g a1 h1) (aplus g a2 h2))).(\lambda (h: 
28 nat).(nat_ind (\lambda (n: nat).(eq A (aplus g a1 (plus n h1)) (aplus g a2 
29 (plus n h2)))) H (\lambda (n: nat).(\lambda (H0: (eq A (aplus g a1 (plus n 
30 h1)) (aplus g a2 (plus n h2)))).(sym_equal A (asucc g (aplus g a2 (plus n 
31 h2))) (asucc g (aplus g a1 (plus n h1))) (sym_equal A (asucc g (aplus g a1 
32 (plus n h1))) (asucc g (aplus g a2 (plus n h2))) (sym_equal A (asucc g (aplus 
33 g a2 (plus n h2))) (asucc g (aplus g a1 (plus n h1))) (f_equal2 G A A asucc g 
34 g (aplus g a2 (plus n h2)) (aplus g a1 (plus n h1)) (refl_equal G g) (sym_eq 
35 A (aplus g a1 (plus n h1)) (aplus g a2 (plus n h2)) H0))))))) h))))))).
36
37 theorem aplus_assoc:
38  \forall (g: G).(\forall (a: A).(\forall (h1: nat).(\forall (h2: nat).(eq A 
39 (aplus g (aplus g a h1) h2) (aplus g a (plus h1 h2))))))
40 \def
41  \lambda (g: G).(\lambda (a: A).(\lambda (h1: nat).(nat_ind (\lambda (n: 
42 nat).(\forall (h2: nat).(eq A (aplus g (aplus g a n) h2) (aplus g a (plus n 
43 h2))))) (\lambda (h2: nat).(refl_equal A (aplus g a h2))) (\lambda (n: 
44 nat).(\lambda (_: ((\forall (h2: nat).(eq A (aplus g (aplus g a n) h2) (aplus 
45 g a (plus n h2)))))).(\lambda (h2: nat).(nat_ind (\lambda (n0: nat).(eq A 
46 (aplus g (asucc g (aplus g a n)) n0) (asucc g (aplus g a (plus n n0))))) 
47 (eq_ind nat n (\lambda (n0: nat).(eq A (asucc g (aplus g a n)) (asucc g 
48 (aplus g a n0)))) (refl_equal A (asucc g (aplus g a n))) (plus n O) (plus_n_O 
49 n)) (\lambda (n0: nat).(\lambda (H0: (eq A (aplus g (asucc g (aplus g a n)) 
50 n0) (asucc g (aplus g a (plus n n0))))).(eq_ind nat (S (plus n n0)) (\lambda 
51 (n1: nat).(eq A (asucc g (aplus g (asucc g (aplus g a n)) n0)) (asucc g 
52 (aplus g a n1)))) (sym_equal A (asucc g (asucc g (aplus g a (plus n n0)))) 
53 (asucc g (aplus g (asucc g (aplus g a n)) n0)) (sym_equal A (asucc g (aplus g 
54 (asucc g (aplus g a n)) n0)) (asucc g (asucc g (aplus g a (plus n n0)))) 
55 (sym_equal A (asucc g (asucc g (aplus g a (plus n n0)))) (asucc g (aplus g 
56 (asucc g (aplus g a n)) n0)) (f_equal2 G A A asucc g g (asucc g (aplus g a 
57 (plus n n0))) (aplus g (asucc g (aplus g a n)) n0) (refl_equal G g) (sym_eq A 
58 (aplus g (asucc g (aplus g a n)) n0) (asucc g (aplus g a (plus n n0))) 
59 H0))))) (plus n (S n0)) (plus_n_Sm n n0)))) h2)))) h1))).
60
61 theorem aplus_asucc:
62  \forall (g: G).(\forall (h: nat).(\forall (a: A).(eq A (aplus g (asucc g a) 
63 h) (asucc g (aplus g a h)))))
64 \def
65  \lambda (g: G).(\lambda (h: nat).(\lambda (a: A).(eq_ind_r A (aplus g a 
66 (plus (S O) h)) (\lambda (a0: A).(eq A a0 (asucc g (aplus g a h)))) 
67 (refl_equal A (asucc g (aplus g a h))) (aplus g (aplus g a (S O)) h) 
68 (aplus_assoc g a (S O) h)))).
69
70 theorem aplus_sort_O_S_simpl:
71  \forall (g: G).(\forall (n: nat).(\forall (k: nat).(eq A (aplus g (ASort O 
72 n) (S k)) (aplus g (ASort O (next g n)) k))))
73 \def
74  \lambda (g: G).(\lambda (n: nat).(\lambda (k: nat).(eq_ind A (aplus g (asucc 
75 g (ASort O n)) k) (\lambda (a: A).(eq A a (aplus g (ASort O (next g n)) k))) 
76 (refl_equal A (aplus g (ASort O (next g n)) k)) (asucc g (aplus g (ASort O n) 
77 k)) (aplus_asucc g k (ASort O n))))).
78
79 theorem aplus_sort_S_S_simpl:
80  \forall (g: G).(\forall (n: nat).(\forall (h: nat).(\forall (k: nat).(eq A 
81 (aplus g (ASort (S h) n) (S k)) (aplus g (ASort h n) k)))))
82 \def
83  \lambda (g: G).(\lambda (n: nat).(\lambda (h: nat).(\lambda (k: nat).(eq_ind 
84 A (aplus g (asucc g (ASort (S h) n)) k) (\lambda (a: A).(eq A a (aplus g 
85 (ASort h n) k))) (refl_equal A (aplus g (ASort h n) k)) (asucc g (aplus g 
86 (ASort (S h) n) k)) (aplus_asucc g k (ASort (S h) n)))))).
87
88 alias id "next_plus_next" = "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/next_plus/props/next_plus_next.con".
89 alias id "next_plus" = "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/next_plus/defs/next_plus.con".
90 theorem aplus_asort_O_simpl:
91  \forall (g: G).(\forall (h: nat).(\forall (n: nat).(eq A (aplus g (ASort O 
92 n) h) (ASort O (next_plus g n h)))))
93 \def
94  \lambda (g: G).(\lambda (h: nat).(nat_ind (\lambda (n: nat).(\forall (n0: 
95 nat).(eq A (aplus g (ASort O n0) n) (ASort O (next_plus g n0 n))))) (\lambda 
96 (n: nat).(refl_equal A (ASort O n))) (\lambda (n: nat).(\lambda (H: ((\forall 
97 (n0: nat).(eq A (aplus g (ASort O n0) n) (ASort O (next_plus g n0 
98 n)))))).(\lambda (n0: nat).(eq_ind A (aplus g (asucc g (ASort O n0)) n) 
99 (\lambda (a: A).(eq A a (ASort O (next g (next_plus g n0 n))))) (eq_ind nat 
100 (next_plus g (next g n0) n) (\lambda (n1: nat).(eq A (aplus g (ASort O (next 
101 g n0)) n) (ASort O n1))) (H (next g n0)) (next g (next_plus g n0 n)) 
102 (next_plus_next g n0 n)) (asucc g (aplus g (ASort O n0) n)) (aplus_asucc g n 
103 (ASort O n0)))))) h)).
104
105 theorem aplus_asort_le_simpl:
106  \forall (g: G).(\forall (h: nat).(\forall (k: nat).(\forall (n: nat).((le h 
107 k) \to (eq A (aplus g (ASort k n) h) (ASort (minus k h) n))))))
108 \def
109  \lambda (g: G).(\lambda (h: nat).(nat_ind (\lambda (n: nat).(\forall (k: 
110 nat).(\forall (n0: nat).((le n k) \to (eq A (aplus g (ASort k n0) n) (ASort 
111 (minus k n) n0)))))) (\lambda (k: nat).(\lambda (n: nat).(\lambda (_: (le O 
112 k)).(eq_ind nat k (\lambda (n0: nat).(eq A (ASort k n) (ASort n0 n))) 
113 (refl_equal A (ASort k n)) (minus k O) (minus_n_O k))))) (\lambda (h0: 
114 nat).(\lambda (H: ((\forall (k: nat).(\forall (n: nat).((le h0 k) \to (eq A 
115 (aplus g (ASort k n) h0) (ASort (minus k h0) n))))))).(\lambda (k: 
116 nat).(nat_ind (\lambda (n: nat).(\forall (n0: nat).((le (S h0) n) \to (eq A 
117 (asucc g (aplus g (ASort n n0) h0)) (ASort (minus n (S h0)) n0))))) (\lambda 
118 (n: nat).(\lambda (H0: (le (S h0) O)).(ex2_ind nat (\lambda (n0: nat).(eq nat 
119 O (S n0))) (\lambda (n0: nat).(le h0 n0)) (eq A (asucc g (aplus g (ASort O n) 
120 h0)) (ASort (minus O (S h0)) n)) (\lambda (x: nat).(\lambda (H1: (eq nat O (S 
121 x))).(\lambda (_: (le h0 x)).(let H3 \def (eq_ind nat O (\lambda (ee: 
122 nat).(match ee in nat return (\lambda (_: nat).Prop) with [O \Rightarrow True 
123 | (S _) \Rightarrow False])) I (S x) H1) in (False_ind (eq A (asucc g (aplus 
124 g (ASort O n) h0)) (ASort (minus O (S h0)) n)) H3))))) (le_gen_S h0 O H0)))) 
125 (\lambda (n: nat).(\lambda (_: ((\forall (n0: nat).((le (S h0) n) \to (eq A 
126 (asucc g (aplus g (ASort n n0) h0)) (ASort (minus n (S h0)) n0)))))).(\lambda 
127 (n0: nat).(\lambda (H1: (le (S h0) (S n))).(eq_ind A (aplus g (asucc g (ASort 
128 (S n) n0)) h0) (\lambda (a: A).(eq A a (ASort (minus (S n) (S h0)) n0))) (H n 
129 n0 (le_S_n h0 n H1)) (asucc g (aplus g (ASort (S n) n0) h0)) (aplus_asucc g 
130 h0 (ASort (S n) n0))))))) k)))) h)).
131
132 alias id "minus_n_n" = "cic:/Coq/Arith/Minus/minus_n_n.con".
133 theorem aplus_asort_simpl:
134  \forall (g: G).(\forall (h: nat).(\forall (k: nat).(\forall (n: nat).(eq A 
135 (aplus g (ASort k n) h) (ASort (minus k h) (next_plus g n (minus h k)))))))
136 \def
137  \lambda (g: G).(\lambda (h: nat).(\lambda (k: nat).(\lambda (n: 
138 nat).(lt_le_e k h (eq A (aplus g (ASort k n) h) (ASort (minus k h) (next_plus 
139 g n (minus h k)))) (\lambda (H: (lt k h)).(eq_ind_r nat (plus k (minus h k)) 
140 (\lambda (n0: nat).(eq A (aplus g (ASort k n) n0) (ASort (minus k h) 
141 (next_plus g n (minus h k))))) (eq_ind A (aplus g (aplus g (ASort k n) k) 
142 (minus h k)) (\lambda (a: A).(eq A a (ASort (minus k h) (next_plus g n (minus 
143 h k))))) (eq_ind_r A (ASort (minus k k) n) (\lambda (a: A).(eq A (aplus g a 
144 (minus h k)) (ASort (minus k h) (next_plus g n (minus h k))))) (eq_ind nat O 
145 (\lambda (n0: nat).(eq A (aplus g (ASort n0 n) (minus h k)) (ASort (minus k 
146 h) (next_plus g n (minus h k))))) (eq_ind_r nat O (\lambda (n0: nat).(eq A 
147 (aplus g (ASort O n) (minus h k)) (ASort n0 (next_plus g n (minus h k))))) 
148 (aplus_asort_O_simpl g (minus h k) n) (minus k h) (O_minus k h (le_S_n k h 
149 (le_S (S k) h H)))) (minus k k) (minus_n_n k)) (aplus g (ASort k n) k) 
150 (aplus_asort_le_simpl g k k n (le_n k))) (aplus g (ASort k n) (plus k (minus 
151 h k))) (aplus_assoc g (ASort k n) k (minus h k))) h (le_plus_minus k h 
152 (le_S_n k h (le_S (S k) h H))))) (\lambda (H: (le h k)).(eq_ind_r A (ASort 
153 (minus k h) n) (\lambda (a: A).(eq A a (ASort (minus k h) (next_plus g n 
154 (minus h k))))) (eq_ind_r nat O (\lambda (n0: nat).(eq A (ASort (minus k h) 
155 n) (ASort (minus k h) (next_plus g n n0)))) (refl_equal A (ASort (minus k h) 
156 (next_plus g n O))) (minus h k) (O_minus h k H)) (aplus g (ASort k n) h) 
157 (aplus_asort_le_simpl g h k n H))))))).
158
159 theorem aplus_ahead_simpl:
160  \forall (g: G).(\forall (h: nat).(\forall (a1: A).(\forall (a2: A).(eq A 
161 (aplus g (AHead a1 a2) h) (AHead a1 (aplus g a2 h))))))
162 \def
163  \lambda (g: G).(\lambda (h: nat).(nat_ind (\lambda (n: nat).(\forall (a1: 
164 A).(\forall (a2: A).(eq A (aplus g (AHead a1 a2) n) (AHead a1 (aplus g a2 
165 n)))))) (\lambda (a1: A).(\lambda (a2: A).(refl_equal A (AHead a1 a2)))) 
166 (\lambda (n: nat).(\lambda (H: ((\forall (a1: A).(\forall (a2: A).(eq A 
167 (aplus g (AHead a1 a2) n) (AHead a1 (aplus g a2 n))))))).(\lambda (a1: 
168 A).(\lambda (a2: A).(eq_ind A (aplus g (asucc g (AHead a1 a2)) n) (\lambda 
169 (a: A).(eq A a (AHead a1 (asucc g (aplus g a2 n))))) (eq_ind A (aplus g 
170 (asucc g a2) n) (\lambda (a: A).(eq A (aplus g (asucc g (AHead a1 a2)) n) 
171 (AHead a1 a))) (H a1 (asucc g a2)) (asucc g (aplus g a2 n)) (aplus_asucc g n 
172 a2)) (asucc g (aplus g (AHead a1 a2) n)) (aplus_asucc g n (AHead a1 a2))))))) 
173 h)).
174
175 alias id "next_plus_lt" = "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/next_plus/props/next_plus_lt.con".
176 theorem aplus_asucc_false:
177  \forall (g: G).(\forall (a: A).(\forall (h: nat).((eq A (aplus g (asucc g a) 
178 h) a) \to (\forall (P: Prop).P))))
179 \def
180  \lambda (g: G).(\lambda (a: A).(A_ind (\lambda (a0: A).(\forall (h: 
181 nat).((eq A (aplus g (asucc g a0) h) a0) \to (\forall (P: Prop).P)))) 
182 (\lambda (n: nat).(\lambda (n0: nat).(\lambda (h: nat).(\lambda (H: (eq A 
183 (aplus g (match n with [O \Rightarrow (ASort O (next g n0)) | (S h) 
184 \Rightarrow (ASort h n0)]) h) (ASort n n0))).(\lambda (P: Prop).((match n in 
185 nat return (\lambda (n1: nat).((eq A (aplus g (match n1 with [O \Rightarrow 
186 (ASort O (next g n0)) | (S h) \Rightarrow (ASort h n0)]) h) (ASort n1 n0)) 
187 \to P)) with [O \Rightarrow (\lambda (H0: (eq A (aplus g (ASort O (next g 
188 n0)) h) (ASort O n0))).(let H1 \def (eq_ind A (aplus g (ASort O (next g n0)) 
189 h) (\lambda (a: A).(eq A a (ASort O n0))) H0 (ASort (minus O h) (next_plus g 
190 (next g n0) (minus h O))) (aplus_asort_simpl g h O (next g n0))) in (let H2 
191 \def (f_equal A nat (\lambda (e: A).(match e in A return (\lambda (_: A).nat) 
192 with [(ASort _ n) \Rightarrow n | (AHead _ _) \Rightarrow ((let rec next_plus 
193 (g: G) (n: nat) (i: nat) on i: nat \def (match i with [O \Rightarrow n | (S 
194 i0) \Rightarrow (next g (next_plus g n i0))]) in next_plus) g (next g n0) 
195 (minus h O))])) (ASort (minus O h) (next_plus g (next g n0) (minus h O))) 
196 (ASort O n0) H1) in (let H3 \def (eq_ind_r nat (minus h O) (\lambda (n: 
197 nat).(eq nat (next_plus g (next g n0) n) n0)) H2 h (minus_n_O h)) in 
198 (le_lt_false (next_plus g (next g n0) h) n0 (eq_ind nat (next_plus g (next g 
199 n0) h) (\lambda (n1: nat).(le (next_plus g (next g n0) h) n1)) (le_n 
200 (next_plus g (next g n0) h)) n0 H3) (next_plus_lt g h n0) P))))) | (S n1) 
201 \Rightarrow (\lambda (H0: (eq A (aplus g (ASort n1 n0) h) (ASort (S n1) 
202 n0))).(let H1 \def (eq_ind A (aplus g (ASort n1 n0) h) (\lambda (a: A).(eq A 
203 a (ASort (S n1) n0))) H0 (ASort (minus n1 h) (next_plus g n0 (minus h n1))) 
204 (aplus_asort_simpl g h n1 n0)) in (let H2 \def (f_equal A nat (\lambda (e: 
205 A).(match e in A return (\lambda (_: A).nat) with [(ASort n _) \Rightarrow n 
206 | (AHead _ _) \Rightarrow ((let rec minus (n: nat) on n: (nat \to nat) \def 
207 (\lambda (m: nat).(match n with [O \Rightarrow O | (S k) \Rightarrow (match m 
208 with [O \Rightarrow (S k) | (S l) \Rightarrow (minus k l)])])) in minus) n1 
209 h)])) (ASort (minus n1 h) (next_plus g n0 (minus h n1))) (ASort (S n1) n0) 
210 H1) in ((let H3 \def (f_equal A nat (\lambda (e: A).(match e in A return 
211 (\lambda (_: A).nat) with [(ASort _ n) \Rightarrow n | (AHead _ _) 
212 \Rightarrow ((let rec next_plus (g: G) (n: nat) (i: nat) on i: nat \def 
213 (match i with [O \Rightarrow n | (S i0) \Rightarrow (next g (next_plus g n 
214 i0))]) in next_plus) g n0 (minus h n1))])) (ASort (minus n1 h) (next_plus g 
215 n0 (minus h n1))) (ASort (S n1) n0) H1) in (\lambda (H4: (eq nat (minus n1 h) 
216 (S n1))).(le_Sx_x n1 (eq_ind nat (minus n1 h) (\lambda (n2: nat).(le n2 n1)) 
217 (minus_le n1 h) (S n1) H4) P))) H2))))]) H)))))) (\lambda (a0: A).(\lambda 
218 (_: ((\forall (h: nat).((eq A (aplus g (asucc g a0) h) a0) \to (\forall (P: 
219 Prop).P))))).(\lambda (a1: A).(\lambda (H0: ((\forall (h: nat).((eq A (aplus 
220 g (asucc g a1) h) a1) \to (\forall (P: Prop).P))))).(\lambda (h: 
221 nat).(\lambda (H1: (eq A (aplus g (AHead a0 (asucc g a1)) h) (AHead a0 
222 a1))).(\lambda (P: Prop).(let H2 \def (eq_ind A (aplus g (AHead a0 (asucc g 
223 a1)) h) (\lambda (a: A).(eq A a (AHead a0 a1))) H1 (AHead a0 (aplus g (asucc 
224 g a1) h)) (aplus_ahead_simpl g h a0 (asucc g a1))) in (let H3 \def (f_equal A 
225 A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _) 
226 \Rightarrow ((let rec aplus (g: G) (a: A) (n: nat) on n: A \def (match n with 
227 [O \Rightarrow a | (S n0) \Rightarrow (asucc g (aplus g a n0))]) in aplus) g 
228 (asucc g a1) h) | (AHead _ a) \Rightarrow a])) (AHead a0 (aplus g (asucc g 
229 a1) h)) (AHead a0 a1) H2) in (H0 h H3 P)))))))))) a)).
230
231 theorem aplus_inj:
232  \forall (g: G).(\forall (h1: nat).(\forall (h2: nat).(\forall (a: A).((eq A 
233 (aplus g a h1) (aplus g a h2)) \to (eq nat h1 h2)))))
234 \def
235  \lambda (g: G).(\lambda (h1: nat).(nat_ind (\lambda (n: nat).(\forall (h2: 
236 nat).(\forall (a: A).((eq A (aplus g a n) (aplus g a h2)) \to (eq nat n 
237 h2))))) (\lambda (h2: nat).(nat_ind (\lambda (n: nat).(\forall (a: A).((eq A 
238 (aplus g a O) (aplus g a n)) \to (eq nat O n)))) (\lambda (a: A).(\lambda (_: 
239 (eq A a a)).(refl_equal nat O))) (\lambda (n: nat).(\lambda (_: ((\forall (a: 
240 A).((eq A a (aplus g a n)) \to (eq nat O n))))).(\lambda (a: A).(\lambda (H0: 
241 (eq A a (asucc g (aplus g a n)))).(let H1 \def (eq_ind_r A (asucc g (aplus g 
242 a n)) (\lambda (a0: A).(eq A a a0)) H0 (aplus g (asucc g a) n) (aplus_asucc g 
243 n a)) in (aplus_asucc_false g a n (sym_eq A a (aplus g (asucc g a) n) H1) (eq 
244 nat O (S n)))))))) h2)) (\lambda (n: nat).(\lambda (H: ((\forall (h2: 
245 nat).(\forall (a: A).((eq A (aplus g a n) (aplus g a h2)) \to (eq nat n 
246 h2)))))).(\lambda (h2: nat).(nat_ind (\lambda (n0: nat).(\forall (a: A).((eq 
247 A (aplus g a (S n)) (aplus g a n0)) \to (eq nat (S n) n0)))) (\lambda (a: 
248 A).(\lambda (H0: (eq A (asucc g (aplus g a n)) a)).(let H1 \def (eq_ind_r A 
249 (asucc g (aplus g a n)) (\lambda (a0: A).(eq A a0 a)) H0 (aplus g (asucc g a) 
250 n) (aplus_asucc g n a)) in (aplus_asucc_false g a n H1 (eq nat (S n) O))))) 
251 (\lambda (n0: nat).(\lambda (_: ((\forall (a: A).((eq A (asucc g (aplus g a 
252 n)) (aplus g a n0)) \to (eq nat (S n) n0))))).(\lambda (a: A).(\lambda (H1: 
253 (eq A (asucc g (aplus g a n)) (asucc g (aplus g a n0)))).(let H2 \def 
254 (eq_ind_r A (asucc g (aplus g a n)) (\lambda (a0: A).(eq A a0 (asucc g (aplus 
255 g a n0)))) H1 (aplus g (asucc g a) n) (aplus_asucc g n a)) in (let H3 \def 
256 (eq_ind_r A (asucc g (aplus g a n0)) (\lambda (a0: A).(eq A (aplus g (asucc g 
257 a) n) a0)) H2 (aplus g (asucc g a) n0) (aplus_asucc g n0 a)) in (f_equal nat 
258 nat S n n0 (H n0 (asucc g a) H3)))))))) h2)))) h1)).
259