1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* manca un pezzo del pullback, se inverto poi non tipa *)
16 include "sandwich.ma".
17 include "property_exhaustivity.ma".
19 lemma order_converges_bigger_lowsegment:
21 ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u].
22 ∀x:C.∀p:a order_converges x.
23 ∀j.l ≤ (pi1exT23 ???? p) j.
24 intros; cases p (xi yi Ux Dy Hxy); clear p; simplify;
25 cases Ux (Ixi Sxi); clear Ux; cases Dy (Dyi Iyi); clear Dy;
26 cases (Hxy j) (Ia Sa); clear Hxy; cases Ia (Da SSa); cases Sa (Inca SIa); clear Ia Sa;
27 intro H2; cases (SSa ? H2) (w Hw); simplify in Hw;
28 cases (H (w+j)) (Hal Hau); apply (Hau Hw);
31 lemma order_converges_smaller_upsegment:
33 ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u].
34 ∀x:C.∀p:a order_converges x.
35 ∀j.(pi2exT23 ???? p) j ≤ u.
36 intros; cases p; clear p; simplify; cases H1; clear H1; cases H2; clear H2;
37 cases (H3 j); clear H3; cases H2; cases H7; clear H2 H7;
38 intro H2; cases (H10 ? H2);
39 cases (H (w1+j)); apply (H11 H7);
44 ∀C:ordered_uniform_space.
45 (∀l,u:C.order_continuity {[l,u]}) →
46 ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u].
47 ∀x:C.a order_converges x →
50 uniform_converge {[l,u]} (⌊n,≪a n,H n≫⌋) ≪x,h≫.
52 generalize in match (order_converges_bigger_lowsegment ???? H1 ? H2);
53 generalize in match (order_converges_smaller_upsegment ???? H1 ? H2);
54 cases H2 (xi yi Hx Hy Hxy); clear H2; simplify in ⊢ (% → % → ?); intros;
55 cut (∀i.xi i ∈ [l,u]) as Hxi; [2:
56 intros; split; [2:apply H3] cases (Hxy i) (H5 _); cases H5 (H7 _);
57 apply (le_transitive ???? (H7 0)); simplify;
58 cases (H1 i); assumption;] clear H3;
59 cut (∀i.yi i ∈ [l,u]) as Hyi; [2:
60 intros; split; [apply H2] cases (Hxy i) (_ H5); cases H5 (H7 _);
61 apply (le_transitive ????? (H7 0)); simplify;
62 cases (H1 i); assumption;] clear H2;
64 [1: cases Hx; cases H3; cases Hy; cases H7; split;
65 [1: apply (le_transitive ???? (H8 0)); cases (Hyi 0); assumption
66 |2: apply (le_transitive ????? (H4 0)); cases (Hxi 0); assumption]
68 letin Xi ≝ (⌊n,≪xi n, Hxi n≫⌋);
69 letin Yi ≝ (⌊n,≪yi n, Hyi n≫⌋);
70 letin Ai ≝ (⌊n,≪a n, H1 n≫⌋);
71 apply (sandwich {[l,u]} ≪?, h≫ Xi Yi Ai); [4: assumption;]
72 [1: intro j; cases (Hxy j); cases H3; cases H4; split;
73 [apply (H5 0);|apply (H7 0)]
74 |2: cases (H l u Xi ≪?,h≫) (Ux Uy); apply Ux; cases Hx; split; [apply H3;]
75 cases H4; split; [apply H5] intros (y Hy);cases (H6 (\fst y));[2:apply Hy];
76 exists [apply w] apply H7;
77 |3: cases (H l u Yi ≪?,h≫) (Ux Uy); apply Uy; cases Hy; split; [apply H3;]
78 cases H4; split; [apply H5] intros (y Hy);cases (H6 (\fst y));[2:apply Hy];
79 exists [apply w] apply H7;]]
85 ∀C:ordered_uniform_space.property_sigma C →
86 (∀l,u:C.exhaustive {[l,u]}) →
87 ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u].
88 ∀x:C.a order_converges x →
91 uniform_converge {[l,u]} (⌊n,≪a n,H n≫⌋) ≪x,h≫.
93 generalize in match (order_converges_bigger_lowsegment ???? H1 ? H2);
94 generalize in match (order_converges_smaller_upsegment ???? H1 ? H2);
95 cases H2 (xi yi Hx Hy Hxy); clear H2; simplify in ⊢ (% → % → ?); intros;
96 cut (∀i.xi i ∈ [l,u]) as Hxi; [2:
97 intros; split; [2:apply H3] cases (Hxy i) (H5 _); cases H5 (H7 _);
98 apply (le_transitive ???? (H7 0)); simplify;
99 cases (H1 i); assumption;] clear H3;
100 cut (∀i.yi i ∈ [l,u]) as Hyi; [2:
101 intros; split; [apply H2] cases (Hxy i) (_ H5); cases H5 (H7 _);
102 apply (le_transitive ????? (H7 0)); simplify;
103 cases (H1 i); assumption;] clear H2;
104 letin Xi ≝ (⌊n,≪xi n, Hxi n≫⌋);
105 letin Yi ≝ (⌊n,≪yi n, Hyi n≫⌋);
106 cases (restrict_uniform_convergence_uparrow ? S ?? (H l u) Xi x Hx);
107 cases (restrict_uniform_convergence_downarrow ? S ?? (H l u) Yi x Hy);
108 split; [1: assumption]
110 lapply (uparrow_upperlocated ? xi x Hx)as Ux;
111 lapply (downarrow_lowerlocated ? yi x Hy)as Uy;
112 letin Ai ≝ (⌊n,≪a n, H1 n≫⌋);
113 apply (sandwich {[l,u]} ≪?, h≫ Xi Yi Ai); [4: assumption;|2:apply H3;|3:apply H5]
114 intro j; cases (Hxy j); cases H7; cases H8; split; [apply (H9 0);|apply (H11 0)]