]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/dama/dama/models/q_bars.ma
new specification
[helm.git] / helm / software / matita / contribs / dama / dama / models / q_bars.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "nat_ordered_set.ma".
16 include "models/q_support.ma".
17 include "models/list_support.ma".
18 include "cprop_connectives.ma". 
19
20 definition bar ≝ ratio × ℚ. (* base (Qpos) , height *)
21 record q_f : Type ≝ { start : ℚ; bars: list bar }.
22
23 notation < "\rationals \sup 2" non associative with precedence 90 for @{'q2}.
24 interpretation "Q x Q" 'q2 = (Prod Q Q).
25
26 definition empty_bar : bar ≝ 〈one,OQ〉.
27 notation "\rect" with precedence 90 for @{'empty_bar}.
28 interpretation "q0" 'empty_bar = empty_bar.
29
30 notation < "\ldots\rect\square\EmptySmallSquare\ldots" with precedence 90 for @{'lq2}.
31 interpretation "lq2" 'lq2 = (list bar).
32
33 let rec sum_bases (l:list bar) (i:nat) on i ≝
34     match i with
35     [ O ⇒ OQ
36     | S m ⇒ 
37          match l with
38          [ nil ⇒ sum_bases [] m + Qpos one
39          | cons x tl ⇒ sum_bases tl m + Qpos (\fst x)]].
40          
41 axiom sum_bases_empty_nat_of_q_ge_OQ:
42   ∀q:ℚ.OQ ≤ sum_bases [] (nat_of_q q). 
43 axiom sum_bases_empty_nat_of_q_le_q:
44   ∀q:ℚ.sum_bases [] (nat_of_q q) ≤ q.
45 axiom sum_bases_empty_nat_of_q_le_q_one:
46   ∀q:ℚ.q < sum_bases [] (nat_of_q q) + Qpos one.
47
48 lemma sum_bases_ge_OQ:
49   ∀l,n. OQ ≤ sum_bases l n.
50 intro; elim l; simplify; intros;
51 [1: elim n; [apply q_eq_to_le;reflexivity] simplify;
52     apply q_le_plus_trans; try assumption; apply q_lt_to_le; apply q_pos_lt_OQ;
53 |2: cases n; [apply q_eq_to_le;reflexivity] simplify;    
54     apply q_le_plus_trans; [apply H| apply q_lt_to_le; apply q_pos_lt_OQ;]]
55 qed.
56
57 alias symbol "leq" = "Q less or equal than".
58 lemma sum_bases_O:
59   ∀l.∀x.sum_bases l x ≤ OQ → x = O.
60 intros; cases x in H; [intros; reflexivity] intro; cases (?:False);
61 cases (q_le_cases ?? H); 
62 [1: apply (q_lt_corefl OQ); rewrite < H1 in ⊢ (?? %); 
63 |2: apply (q_lt_antisym ??? H1);] clear H H1; cases l;
64 simplify; apply q_lt_plus_trans;
65 try apply q_pos_lt_OQ; 
66 try apply (sum_bases_ge_OQ []);
67 apply (sum_bases_ge_OQ l1);
68 qed.
69
70
71 lemma sum_bases_increasing:
72   ∀l.∀n1,n2:nat.n1<n2→sum_bases l n1 < sum_bases l n2.                           
73 intro; elim l 0;
74 [1: intros 2; apply (cic:/matita/dama/nat_ordered_set/nat_elim2.con ???? n1 n2);
75     [1: intro; cases n;
76         [1: intro X; cases (not_le_Sn_O ? X);
77         |2: simplify; intros; apply q_lt_plus_trans;
78             [1: apply sum_bases_ge_OQ;|2: apply (q_pos_lt_OQ one)]]
79     |2: simplify; intros;  cases (not_le_Sn_O ? H);
80     |3: simplify; intros; apply q_lt_inj_plus_r;
81         apply H; apply le_S_S_to_le; apply H1;]
82 |2:  intros 5; apply (cic:/matita/dama/nat_ordered_set/nat_elim2.con ???? n1 n2);
83     [1: simplify; intros; cases n in H1; intros;
84         [1: cases (not_le_Sn_O ? H1);
85         |2: simplify; apply q_lt_plus_trans;
86             [1: apply sum_bases_ge_OQ;|2: apply q_pos_lt_OQ]]
87     |2: simplify; intros; cases (not_le_Sn_O ? H1);
88     |3: simplify; intros; apply q_lt_inj_plus_r; apply H;
89         apply le_S_S_to_le; apply H2;]]
90 qed.
91
92
93 definition eject1 ≝
94   λP.λp:∃x:nat × ℚ.P x.match p with [ex_introT p _ ⇒ p].
95 coercion eject1.
96 definition inject1 ≝ λP.λp:nat × ℚ.λh:P p. ex_introT ? P p h.
97 coercion inject1 with 0 1 nocomposites.
98
99 definition value : 
100   ∀f:q_f.∀i:ℚ.∃p:nat × ℚ. 
101    Or4
102     (And3 (i < start f) (\fst p = O) (\snd p = OQ))
103     (And3 
104      (start f + sum_bases (bars f) (len (bars f)) ≤ i) 
105      (\fst p = O) (\snd p = OQ))
106     (And3 (bars f = []) (\fst p = O) (\snd p = OQ)) 
107     (And4 
108      (And3 (bars f ≠ []) (start f ≤ i) (i < start f + sum_bases (bars f) (len (bars f))))
109      (\fst p ≤ (len (bars f))) 
110      (\snd p = \snd (nth (bars f) ▭ (\fst p)))
111      (sum_bases (bars f) (\fst p) ≤ ⅆ[i,start f] ∧
112        (ⅆ[i, start f] < sum_bases (bars f) (S (\fst p))))).
113 intros;
114 letin value ≝ (
115   let rec value (p: ℚ) (l : list bar) on l ≝
116     match l with
117     [ nil ⇒ 〈nat_of_q p,OQ〉
118     | cons x tl ⇒
119         match q_cmp p (Qpos (\fst x)) with
120         [ q_lt _ ⇒ 〈O, \snd x〉
121         | _ ⇒
122            let rc ≝ value (p - Qpos (\fst x)) tl in
123            〈S (\fst rc),\snd rc〉]]
124   in value :
125   ∀acc,l.∃p:nat × ℚ.OQ ≤ acc →
126      Or 
127       (And3 (l = []) (\fst p = nat_of_q acc) (\snd p = OQ))
128       (And3
129        (sum_bases l (\fst p) ≤ acc) 
130        (acc < sum_bases l (S (\fst p))) 
131        (\snd p = \snd (nth l ▭ (\fst p)))));
132 [5: clearbody value; 
133     cases (q_cmp i (start f));
134     [2: exists [apply 〈O,OQ〉] simplify; constructor 1; split; try assumption; 
135         try reflexivity; apply q_lt_to_le; assumption;
136     |1: cases (bars f); [exists [apply 〈O,OQ〉] simplify; constructor 3; split;try assumption;reflexivity;]
137         cases (value ⅆ[i,start f] (b::l)) (p Hp);
138         cases (Hp (q_dist_ge_OQ ? ?)); clear Hp value; [cases H1; destruct H2]
139         cases H1; clear H1; lapply (sum_bases_O (b::l) (\fst p)) as H1;
140         [2: apply (q_le_trans ??? H2); rewrite > H; apply q_eq_to_le;
141             rewrite > q_d_x_x; reflexivity;
142         |1: exists [apply p] simplify; constructor 4; rewrite > H1; split;
143             try split; try rewrite > q_d_x_x; try autobatch depth=2;
144             [1: rewrite > H; rewrite > q_plus_sym; apply q_lt_plus;
145                 rewrite > q_plus_minus; apply q_lt_plus_trans; [apply sum_bases_ge_OQ]
146                 apply q_pos_lt_OQ;
147             |2: rewrite > H; rewrite > q_d_x_x; apply q_eq_to_le; reflexivity;
148             |3: rewrite > H; rewrite > q_d_x_x; apply q_lt_plus_trans;
149                 try apply sum_bases_ge_OQ; apply q_pos_lt_OQ;]]
150     |3: cases (q_cmp i (start f+sum_bases (bars f) (len (bars f))));
151         [1: exists [apply 〈O,OQ〉] simplify; constructor 2; split; try assumption; 
152             try reflexivity; rewrite > H1; apply q_eq_to_le; reflexivity;  
153         |3: exists [apply 〈O,OQ〉] simplify; constructor 2; split; try assumption; 
154             try reflexivity; apply q_lt_to_le; assumption;
155         |2: generalize in match (refl_eq ? (bars f): bars f = bars f);
156             generalize in match (bars f) in ⊢ (??? % → %); intro X; cases X; clear X;
157             intros;
158             [1: exists [apply 〈O,OQ〉] simplify; constructor 3; split; reflexivity;
159             |2: cases (value ⅆ[i,start f] (b::l)) (p Hp);
160                 cases (Hp (q_dist_ge_OQ ? ?)); clear Hp value; [cases H3;destruct H4]
161                 cases H3; clear H3;
162                 exists [apply p]; constructor 4; split; try split; try assumption;
163                 [1: intro X; destruct X;  
164                 |2: apply q_lt_to_le; assumption;
165                 |3: rewrite < H2; assumption;
166                 |4: cases (cmp_nat (\fst p) (len (bars f)));
167                     [1:apply lt_to_le;rewrite <H2; assumption|rewrite > H3;rewrite < H2;apply le_n]   
168                     cases (?:False); cases (\fst p) in H3 H4 H6; clear H5;
169                     [1: intros; apply (not_le_Sn_O ? H5);
170                     |2: rewrite > q_d_sym; rewrite > q_d_noabs; [2: apply q_lt_to_le; assumption] 
171                         intros; lapply (q_lt_inj_plus_r ?? (Qopp (start f)) H1); clear H1;
172                         generalize in match Hletin;
173                         rewrite > (q_plus_sym (start f)); rewrite < q_plus_assoc;
174                         do 2 rewrite < q_elim_minus; rewrite > q_plus_minus;
175                         rewrite > q_plus_OQ; intro K; apply (q_lt_corefl (i-start f));
176                         apply (q_lt_le_trans ???? H3); rewrite < H2; 
177                         apply (q_lt_trans ??? K); apply sum_bases_increasing; 
178                         assumption;]]]]]                                 
179 |1,3: intros; right; split;
180      [1,4: clear H2; cases (value (q-Qpos (\fst b)) l1);
181            cases (H2 (q_le_to_diff_ge_OQ ?? (? H1)));
182            [1: intro; apply q_lt_to_le;assumption;
183            |3: simplify; cases H4; apply q_le_minus; assumption;
184            |2,5: simplify; cases H4; rewrite > H5; rewrite > H6;
185                  apply q_le_minus; apply sum_bases_empty_nat_of_q_le_q;
186            |4: intro X; rewrite > X; apply q_eq_to_le; reflexivity;
187            |*: simplify; apply q_le_minus; cases H4; assumption;]   
188     |2,5: cases (value (q-Qpos (\fst b)) l1); 
189           cases (H4 (q_le_to_diff_ge_OQ ?? (? H1)));
190           [1,4: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption;
191           |3,6: cases H5; simplify; change with (q < sum_bases l1 (S (\fst w)) + Qpos (\fst b));
192                 apply q_lt_plus; assumption;
193           |2,5: simplify; cases H5; rewrite > H6; simplify; rewrite > H7;
194                 apply q_lt_plus; apply sum_bases_empty_nat_of_q_le_q_one;] 
195     |*: cases (value (q-Qpos (\fst b)) l1); simplify; 
196         cases (H4 (q_le_to_diff_ge_OQ ?? (? H1))); 
197         [1,4: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption;
198         |3,6: cases H5; assumption;
199         |*: cases H5; rewrite > H6; rewrite > H8;
200             elim (\fst w); [1,3:reflexivity;] simplify; assumption;]]
201 |2: clear value H2; simplify; intros; right; split; [assumption|3:reflexivity]
202     rewrite > q_plus_sym; rewrite > q_plus_OQ; assumption;
203 |4: intros; left; split; reflexivity;] 
204 qed.
205
206 lemma value_OQ_l:
207   ∀l,i.i < start l → \snd (\fst (value l i)) = OQ.
208 intros; cases (value l i) (q Hq); cases Hq; clear Hq; simplify; cases H1; clear H1;
209 try assumption; cases H2; cases (?:False); apply (q_lt_le_incompat ?? H H6);
210 qed.
211     
212 lemma value_OQ_r:
213   ∀l,i.start l + sum_bases (bars l) (len (bars l)) ≤ i → \snd (\fst (value l i)) = OQ.
214 intros; cases (value l i) (q Hq); cases Hq; clear Hq; simplify; cases H1; clear H1;
215 try assumption; cases H2; cases (?:False); apply (q_lt_le_incompat ?? H7 H);
216 qed.
217     
218 lemma value_OQ_e:
219   ∀l,i.bars l = [] → \snd (\fst (value l i)) = OQ.
220 intros; cases (value l i) (q Hq); cases Hq; clear Hq; simplify; cases H1; clear H1;
221 try assumption; cases H2; cases (?:False); apply (H1 H);
222 qed.
223   
224 lemma value_ok:
225   ∀f,i. bars f ≠ [] → start f ≤ i → i < start f + sum_bases (bars f) (len (bars f)) →
226      And4 
227       (\fst (\fst (value f i)) ≤ (len (bars f))) 
228       (\snd (\fst (value f i)) = \snd (nth (bars f) ▭ (\fst (\fst (value f i)))))
229       (sum_bases (bars f) (\fst (\fst (value f i))) ≤ ⅆ[i,start f])
230       (ⅆ[i, start f] < sum_bases (bars f) (S (\fst (\fst (value f i))))).
231 intros; cases (value f i); cases H3; simplify; clear H3; cases H4;
232 [1,2,3: cases (?:False); 
233   [1: apply (q_lt_le_incompat ?? H3 H1);
234   |2: apply (q_lt_le_incompat ?? H2 H3);
235   |3: apply (H H3);]
236 |4: split; cases H7; try assumption;]
237 qed.
238       
239 definition same_values ≝
240   λl1,l2:q_f.
241    ∀input.\snd (\fst (value l1 input)) = \snd (\fst (value l2 input)). 
242
243 definition same_bases ≝ 
244   λl1,l2:q_f.
245     (∀i.\fst (nth (bars l1) ▭ i) = \fst (nth (bars l2) ▭ i)).
246
247 alias symbol "lt" = "Q less than".
248 lemma unpos: ∀x:ℚ.OQ < x → ∃r:ratio.Qpos r = x.
249 intro; cases x; intros; [2:exists [apply r] reflexivity]
250 cases (?:False);
251 [ apply (q_lt_corefl ? H)|apply (q_neg_gt ? H)]
252 qed.