1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "models/q_bars.ma".
17 (* move in nat/minus *)
18 lemma minus_lt : ∀i,j. i < j → j - i = S (j - S i).
20 apply (nat_elim2 ???? i j); simplify; intros;
21 [1: cases n in H; intros; rewrite < minus_n_O; [cases (not_le_Sn_O ? H);]
22 simplify; rewrite < minus_n_O; reflexivity;
23 |2: cases (not_le_Sn_O ? H);
24 |3: apply H; apply le_S_S_to_le; assumption;]
27 alias symbol "lt" = "bar lt".
28 lemma inversion_sorted:
29 ∀a,l. sorted q2_lt (a::l) → Or (a < \hd ▭ l) (l = []).
30 intros 2; elim l; [right;reflexivity] left; inversion H1; intros;
31 [1,2:destruct H2| destruct H5; assumption]
34 lemma inversion_sorted2:
35 ∀a,b,l. sorted q2_lt (a::b::l) → a < b.
36 intros; inversion H; intros; [1,2:destruct H1] destruct H4; assumption;
39 let rec copy (l : list bar) on l : list bar ≝
42 | cons x tl ⇒ 〈\fst x, 〈OQ,OQ〉〉 :: copy tl].
45 ∀l:list bar.sorted q2_lt l → sorted q2_lt (copy l).
46 intro l; elim l; [apply (sorted_nil q2_lt)] simplify;
47 cases l1 in H H1; simplify; intros; [apply (sorted_one q2_lt)]
48 apply (sorted_cons q2_lt); [2: apply H; apply (sorted_tail q2_lt ?? H1);]
49 apply (inversion_sorted2 ??? H1);
52 lemma len_copy: ∀l. \len (copy l) = \len l.
53 intro; elim l; [reflexivity] simplify; apply eq_f; assumption;
56 lemma copy_same_bases: ∀l. same_bases l (copy l).
57 intros; elim l; [intro; reflexivity] intro; simplify; cases i; [reflexivity]
58 simplify; apply (H n);
61 lemma copy_OQ : ∀l,n.nth_height (copy l) n = 〈OQ,OQ〉.
62 intro; elim l; [elim n;[reflexivity] simplify; assumption]
63 simplify; cases n; [reflexivity] simplify; apply (H n1);
66 lemma prepend_sorted_with_same_head:
68 sorted r (x::l1) → sorted r l2 →
69 (r x (\nth l1 d1 O) → r x (\nth l2 d2 O)) → (l1 = [] → r x d1) →
71 intros 8 (R x l1 l2 d1 d2 Sl1 Sl2); inversion Sl1; inversion Sl2;
72 intros; destruct; try assumption; [3: apply (sorted_one R);]
73 [1: apply sorted_cons;[2:assumption] apply H2; apply H3; reflexivity;
74 |2: apply sorted_cons;[2: assumption] apply H5; apply H6; reflexivity;
75 |3: apply sorted_cons;[2: assumption] apply H5; assumption;
76 |4: apply sorted_cons;[2: assumption] apply H8; apply H4;]
79 lemma move_head_sorted: ∀x,l1,l2.
80 sorted q2_lt (x::l1) → sorted q2_lt l2 → nth_base l2 O = nth_base l1 O →
81 l1 ≠ [] → sorted q2_lt (x::l2).
82 intros; apply (prepend_sorted_with_same_head q2_lt x l1 l2 ▭ ▭);
83 try assumption; intros; unfold nth_base in H2; whd in H4;
84 [1: rewrite < H2 in H4; assumption;
89 lemma sort_q2lt_same_base:
90 ∀b,h1,h2,l. sorted q2_lt (〈b,h1〉::l) → sorted q2_lt (〈b,h2〉::l).
91 intros; cases (inversion_sorted ?? H); [2: rewrite > H1; apply (sorted_one q2_lt)]
92 lapply (sorted_tail q2_lt ?? H) as K; clear H; cases l in H1 K; simplify; intros;
93 [apply (sorted_one q2_lt);|apply (sorted_cons q2_lt);[2: assumption] apply H]
99 value_simpl (copy l) h1 h2 i h3 = 〈OQ,OQ〉.
100 intros; elim l in h1 h2 h3; [cases (not_le_Sn_O ? H1);]
101 cases l1 in H H1 H2 H3;
102 [1: intros; simplify in ⊢ (? ? (? % ? ? ? ?) ?);
103 rewrite > (value_unit 〈\fst a,〈OQ,OQ〉〉); reflexivity;
104 |2: intros; simplify in H2 H3 H4 ⊢ (? ? (? % ? ? ? ?) ?);
105 cases (q_cmp (Qpos i) (\fst b));
106 [2: rewrite > (value_tail ??? H2 H3 ? H4 H1); apply H;
107 |1: rewrite > (value_head ??? H2 H3 ? H4 H1); reflexivity]]