1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ordered_uniform.ma".
16 include "property_sigma.ma".
19 definition exhaustive ≝
20 λC:ordered_uniform_space.
22 (a is_increasing → a is_upper_located → a is_cauchy) ∧
23 (b is_decreasing → b is_lower_located → b is_cauchy).
25 lemma segment_upperbound:
26 ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.u is_upper_bound (λn.fst (a n)).
27 intros 5; change with (fst (a n) ≤ u); cases (a n); cases H; assumption;
30 lemma segment_lowerbound:
31 ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.l is_lower_bound (λn.fst (a n)).
32 intros 5; change with (l ≤ fst (a n)); cases (a n); cases H; assumption;
35 lemma segment_preserves_uparrow:
36 ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.∀x,h.
37 (λn.fst (a n)) ↑ x → a ↑ (sig_in ?? x h).
38 intros; cases H (Ha Hx); split [apply Ha] cases Hx;
39 split; [apply H1] intros;
40 cases (H2 (fst y) H3); exists [apply w] assumption;
43 lemma segment_preserves_downarrow:
44 ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.∀x,h.
45 (λn.fst (a n)) ↓ x → a ↓ (sig_in ?? x h).
46 intros; cases H (Ha Hx); split [apply Ha] cases Hx;
47 split; [apply H1] intros;
48 cases (H2 (fst y) H3); exists [apply w] assumption;
53 ∀C:ordered_uniform_space.∀l,u:C.∀a:sequence {[l,u]}.
54 a is_cauchy → (λn:nat.fst (a n)) is_cauchy.
56 alias symbol "pi1" (instance 3) = "pair pi1".
57 apply (H (λx:{[l,u]} square.U 〈fst (fst x),fst (snd x)〉));
58 (unfold segment_ordered_uniform_space; simplify);
59 exists [apply U] split; [assumption;]
60 intro; cases b; intros; simplify; split; intros; assumption;
64 lemma restrict_uniform_convergence_uparrow:
65 ∀C:ordered_uniform_space.property_sigma C →
66 ∀l,u:C.exhaustive {[l,u]} →
67 ∀a:sequence {[l,u]}.∀x:C. (λn.fst (a n)) ↑ x →
68 x∈[l,u] ∧ ∀h:x ∈ [l,u].a uniform_converges (sig_in ?? x h).
69 intros; cases H2 (Ha Hx); clear H2; cases Hx; split;
71 [1: apply (supremum_is_upper_bound C ?? Hx u);
72 apply (segment_upperbound ? l);
73 |2: apply (le_transitive ?? (fst (a 0))); [2: apply H2;]
74 apply (segment_lowerbound ?l u);]
76 lapply (uparrow_upperlocated ? a (sig_in ?? x h)) as Ha1;
77 [2: apply segment_preserves_uparrow;split; assumption;]
78 lapply (segment_preserves_supremum ?l u a (sig_in ??? h)) as Ha2;
79 [2:split; assumption]; cases Ha2; clear Ha2;
80 cases (H1 a a); lapply (H6 H4 Ha1) as HaC;
81 lapply (segment_cauchy ? l u ? HaC) as Ha;
82 lapply (sigma_cauchy ? H ? x ? Ha); [left; split; assumption]
83 apply restric_uniform_convergence; assumption;]
86 lemma restrict_uniform_convergence_downarrow:
87 ∀C:ordered_uniform_space.property_sigma C →
88 ∀l,u:C.exhaustive {[l,u]} →
89 ∀a:sequence {[l,u]}.∀x:C. (λn.fst (a n)) ↓ x →
90 x∈[l,u] ∧ ∀h:x ∈ [l,u].a uniform_converges (sig_in ?? x h).
91 intros; cases H2 (Ha Hx); clear H2; cases Hx; split;
93 [2: apply (infimum_is_lower_bound C ?? Hx l);
94 apply (segment_lowerbound ? l u);
95 |1: apply (le_transitive ?? (fst (a 0))); [apply H2;]
96 apply (segment_upperbound ? l u);]
98 lapply (downarrow_lowerlocated ? a (sig_in ?? x h)) as Ha1;
99 [2: apply segment_preserves_downarrow;split; assumption;]
100 lapply (segment_preserves_infimum ?l u a (sig_in ??? h)) as Ha2;
101 [2:split; assumption]; cases Ha2; clear Ha2;
102 cases (H1 a a); lapply (H7 H4 Ha1) as HaC;
103 lapply (segment_cauchy ? l u ? HaC) as Ha;
104 lapply (sigma_cauchy ? H ? x ? Ha); [right; split; assumption]
105 apply restric_uniform_convergence; assumption;]