1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ordered_uniform.ma".
16 include "property_sigma.ma".
19 definition exhaustive ≝
20 λC:ordered_uniform_space.
22 (a is_increasing → a is_upper_located → a is_cauchy) ∧
23 (b is_decreasing → b is_lower_located → b is_cauchy).
25 lemma segment_upperbound:
26 ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.u is_upper_bound ⌊n,\fst (a n)⌋.
27 intros 5; change with (\fst (a n) ≤ u); cases (a n); cases H; assumption;
30 lemma segment_lowerbound:
31 ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.l is_lower_bound ⌊n,\fst (a n)⌋.
32 intros 5; change with (l ≤ \fst (a n)); cases (a n); cases H; assumption;
35 lemma segment_preserves_uparrow:
36 ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.∀x,h.
37 ⌊n,\fst (a n)⌋ ↑ x → a ↑ ≪x,h≫.
38 intros; cases H (Ha Hx); split [apply Ha] cases Hx;
39 split; [apply H1] intros;
40 cases (H2 (\fst y)); [2: apply H3;] exists [apply w] assumption;
43 lemma segment_preserves_downarrow:
44 ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.∀x,h.
45 ⌊n,\fst (a n)⌋ ↓ x → a ↓ ≪x,h≫.
46 intros; cases H (Ha Hx); split [apply Ha] cases Hx;
47 split; [apply H1] intros;
48 cases (H2 (\fst y));[2:apply H3]; exists [apply w] assumption;
53 ∀C:ordered_uniform_space.∀l,u:C.∀a:sequence {[l,u]}.
54 a is_cauchy → ⌊n,\fst (a n)⌋ is_cauchy.
56 alias symbol "pi1" (instance 3) = "pair pi1".
57 alias symbol "pi2" = "pair pi2".
58 apply (H (λx:{[l,u]} square.U 〈\fst (\fst x),\fst (\snd x)〉));
59 (unfold segment_ordered_uniform_space; simplify);
60 exists [apply U] split; [assumption;]
61 intro; cases b; intros; simplify; split; intros; assumption;
65 lemma restrict_uniform_convergence_uparrow:
66 ∀C:ordered_uniform_space.property_sigma C →
67 ∀l,u:C.exhaustive {[l,u]} →
68 ∀a:sequence {[l,u]}.∀x:C. ⌊n,\fst (a n)⌋ ↑ x →
69 x∈[l,u] ∧ ∀h:x ∈ [l,u].a uniform_converges ≪x,h≫.
70 intros; cases H2 (Ha Hx); clear H2; cases Hx; split;
72 [1: apply (supremum_is_upper_bound C ?? Hx u);
73 apply (segment_upperbound ? l);
74 |2: apply (le_transitive ? ??? ? (H2 O));
75 apply (segment_lowerbound ?l u);]
77 lapply (uparrow_upperlocated ? a ≪x,h≫) as Ha1;
78 [2: apply segment_preserves_uparrow;split; assumption;]
79 lapply (segment_preserves_supremum ? l u a ≪?,h≫) as Ha2;
80 [2:split; assumption]; cases Ha2; clear Ha2;
81 cases (H1 a a); lapply (H6 H4 Ha1) as HaC;
82 lapply (segment_cauchy ? l u ? HaC) as Ha;
83 lapply (sigma_cauchy ? H ? x ? Ha); [left; split; assumption]
84 apply restric_uniform_convergence; assumption;]
87 lemma restrict_uniform_convergence_downarrow:
88 ∀C:ordered_uniform_space.property_sigma C →
89 ∀l,u:C.exhaustive {[l,u]} →
90 ∀a:sequence {[l,u]}.∀x:C. ⌊n,\fst (a n)⌋ ↓ x →
91 x∈[l,u] ∧ ∀h:x ∈ [l,u].a uniform_converges ≪x,h≫.
92 intros; cases H2 (Ha Hx); clear H2; cases Hx; split;
94 [2: apply (infimum_is_lower_bound C ?? Hx l);
95 apply (segment_lowerbound ? l u);
96 |1: apply (le_transitive ???? (H2 O));
97 apply (segment_upperbound ? l u);]
99 lapply (downarrow_lowerlocated ? a ≪x,h≫) as Ha1;
100 [2: apply segment_preserves_downarrow;split; assumption;]
101 lapply (segment_preserves_infimum ?l u a ≪?,h≫) as Ha2;
102 [2:split; assumption]; cases Ha2; clear Ha2;
103 cases (H1 a a); lapply (H7 H4 Ha1) as HaC;
104 lapply (segment_cauchy ? l u ? HaC) as Ha;
105 lapply (sigma_cauchy ? H ? x ? Ha); [right; split; assumption]
106 apply restric_uniform_convergence; assumption;]