1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
19 axiom continuo: (R → R) → Prop.
20 axiom tends_to: (nat → R) → R → Prop.
21 axiom tends_to_inf: (nat → R) → Prop.
23 definition monotone_not_increasing ≝
25 ∀n:nat.alpha (S n) ≤ alpha n.
27 definition inf_bounded ≝
29 ∃ m. ∀ n:nat. m ≤ alpha n.
31 axiom converge: ∀ alpha.
32 monotone_not_increasing alpha →
34 ∃ l. tends_to alpha l.
36 definition punto_fisso :=
37 λ F:R→R. λ x. x = F x.
39 let rec successione F x (n:nat) on n : R ≝
42 | S n ⇒ F (successione F x n)
45 axiom lim_punto_fisso:
46 ∀ F: R → R. ∀b:R. continuo F →
47 let alpha := successione F b in
48 ∀ l. tends_to alpha l →
51 definition monotone_not_decreasing ≝
53 ∀n:nat.alpha n ≤ alpha (S n).
55 definition sup_bounded ≝
57 ∃ m. ∀ n:nat. alpha n ≤ m.