1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "o-algebra.ma".
17 record basic_pair: Type2 ≝
20 rel: arrows2 ? concr form
23 interpretation "basic pair relation indexed" 'Vdash2 x y c = (rel c x y).
24 interpretation "basic pair relation (non applied)" 'Vdash c = (rel c).
26 alias symbol "eq" = "setoid1 eq".
27 alias symbol "compose" = "category1 composition".
30 alias symbol "eq" = "setoid2 eq".
31 alias symbol "compose" = "category2 composition".
32 record relation_pair (BP1,BP2: basic_pair): Type2 ≝
33 { concr_rel: arrows2 ? (concr BP1) (concr BP2);
34 form_rel: arrows2 ? (form BP1) (form BP2);
35 commute: ⊩ ∘ concr_rel = form_rel ∘ ⊩
38 notation "hvbox (r \sub \c)" with precedence 90 for @{'concr_rel $r}.
39 notation "hvbox (r \sub \f)" with precedence 90 for @{'form_rel $r}.
41 interpretation "concrete relation" 'concr_rel r = (concr_rel __ r).
42 interpretation "formal relation" 'form_rel r = (form_rel __ r).
44 definition relation_pair_equality:
45 ∀o1,o2. equivalence_relation2 (relation_pair o1 o2).
48 [ apply (λr,r'. ⊩ ∘ r \sub\c = ⊩ ∘ r' \sub\c);
61 (* qui setoid1 e' giusto: ma non lo e'!!! *)
62 definition relation_pair_setoid: basic_pair → basic_pair → setoid2.
65 [ apply (relation_pair b b1)
66 | apply relation_pair_equality
70 definition relation_pair_of_relation_pair_setoid:
71 ∀P,Q. relation_pair_setoid P Q → relation_pair P Q ≝ λP,Q,x.x.
72 coercion relation_pair_of_relation_pair_setoid.
74 lemma eq_to_eq': ∀o1,o2.∀r,r': relation_pair_setoid o1 o2. r=r' → r \sub\f ∘ ⊩ = r'\sub\f ∘ ⊩.
75 intros 5 (o1 o2 r r' H); change in H with (⊩ ∘ r\sub\c = ⊩ ∘ r'\sub\c);
76 apply (.= ((commute ?? r) \sup -1));
78 apply (.= (commute ?? r'));
83 definition id_relation_pair: ∀o:basic_pair. relation_pair o o.
87 | lapply (id_neutral_right2 ? (concr o) ? (⊩)) as H;
88 lapply (id_neutral_left2 ?? (form o) (⊩)) as H1;
93 definition relation_pair_composition:
94 ∀o1,o2,o3. binary_morphism2 (relation_pair_setoid o1 o2) (relation_pair_setoid o2 o3) (relation_pair_setoid o1 o3).
99 [ apply (r1 \sub\c ∘ r \sub\c)
100 | apply (r1 \sub\f ∘ r \sub\f)
101 | lapply (commute ?? r) as H;
102 lapply (commute ?? r1) as H1;
103 apply rule (.= ASSOC);
105 apply rule (.= ASSOC ^ -1);
109 change with (⊩ ∘ (b\sub\c ∘ a\sub\c) = ⊩ ∘ (b'\sub\c ∘ a'\sub\c));
110 change in e with (⊩ ∘ a \sub\c = ⊩ ∘ a' \sub\c);
111 change in e1 with (⊩ ∘ b \sub\c = ⊩ ∘ b' \sub\c);
112 apply rule (.= ASSOC);
114 apply (.= #‡(commute ?? b'));
115 apply rule (.= ASSOC \sup -1);
117 apply rule (.= ASSOC);
118 apply (.= #‡(commute ?? b')\sup -1);
119 apply rule (ASSOC \sup -1)]
122 definition BP: category2.
125 | apply relation_pair_setoid
126 | apply id_relation_pair
127 | apply relation_pair_composition
129 change with (⊩ ∘ (a34\sub\c ∘ (a23\sub\c ∘ a12\sub\c)) =
130 ⊩ ∘ ((a34\sub\c ∘ a23\sub\c) ∘ a12\sub\c));
131 apply rule (ASSOC‡#);
133 change with (⊩ ∘ (a\sub\c ∘ (id_relation_pair o1)\sub\c) = ⊩ ∘ a\sub\c);
134 apply ((id_neutral_right2 ????)‡#);
136 change with (⊩ ∘ ((id_relation_pair o2)\sub\c ∘ a\sub\c) = ⊩ ∘ a\sub\c);
137 apply ((id_neutral_left2 ????)‡#);]
140 definition basic_pair_of_objs2_BP: objs2 BP → basic_pair ≝ λx.x.
141 coercion basic_pair_of_objs2_BP.
143 definition relation_pair_setoid_of_arrows2_BP:
144 ∀P,Q.arrows2 BP P Q → relation_pair_setoid P Q ≝ λP,Q,c.c.
145 coercion relation_pair_setoid_of_arrows2_BP.
148 definition BPext: ∀o: BP. form o ⇒ Ω \sup (concr o).
149 intros; constructor 1;
150 [ apply (ext ? ? (rel o));
156 definition BPextS: ∀o: BP. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝
161 definition fintersects: ∀o: BP. binary_morphism1 (form o) (form o) (Ω \sup (form o)).
162 intros (o); constructor 1;
163 [ apply (λa,b: form o.{c | BPext o c ⊆ BPext o a ∩ BPext o b });
164 intros; simplify; apply (.= (†H)‡#); apply refl1
165 | intros; split; simplify; intros;
166 [ apply (. #‡((†H)‡(†H1))); assumption
167 | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]]
170 interpretation "fintersects" 'fintersects U V = (fun1 ___ (fintersects _) U V).
172 definition fintersectsS:
173 ∀o:BP. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)).
174 intros (o); constructor 1;
175 [ apply (λo: basic_pair.λa,b: Ω \sup (form o).{c | BPext o c ⊆ BPextS o a ∩ BPextS o b });
176 intros; simplify; apply (.= (†H)‡#); apply refl1
177 | intros; split; simplify; intros;
178 [ apply (. #‡((†H)‡(†H1))); assumption
179 | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]]
182 interpretation "fintersectsS" 'fintersects U V = (fun1 ___ (fintersectsS _) U V).
186 definition relS: ∀o: BP. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP.
187 intros (o); constructor 1;
188 [ apply (λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y);
189 | intros; split; intros; cases H2; exists [1,3: apply w]
190 [ apply (. (#‡H1)‡(H‡#)); assumption
191 | apply (. (#‡H1 \sup -1)‡(H \sup -1‡#)); assumption]]
194 interpretation "basic pair relation for subsets" 'Vdash2 x y = (fun1 (concr _) __ (relS _) x y).
195 interpretation "basic pair relation for subsets (non applied)" 'Vdash = (fun1 ___ (relS _)).
198 notation "□ \sub b" non associative with precedence 90 for @{'box $b}.
199 notation > "□_term 90 b" non associative with precedence 90 for @{'box $b}.
200 interpretation "Universal image ⊩⎻*" 'box x = (fun12 _ _ (or_f_minus_star _ _) (rel x)).
202 notation "◊ \sub b" non associative with precedence 90 for @{'diamond $b}.
203 notation > "◊_term 90 b" non associative with precedence 90 for @{'diamond $b}.
204 interpretation "Existential image ⊩" 'diamond x = (fun12 _ _ (or_f _ _) (rel x)).
206 notation "'Rest' \sub b" non associative with precedence 90 for @{'rest $b}.
207 notation > "'Rest'⎽term 90 b" non associative with precedence 90 for @{'rest $b}.
208 interpretation "Universal pre-image ⊩*" 'rest x = (fun12 _ _ (or_f_star _ _) (rel x)).
210 notation "'Ext' \sub b" non associative with precedence 90 for @{'ext $b}.
211 notation > "'Ext'⎽term 90 b" non associative with precedence 90 for @{'ext $b}.
212 interpretation "Existential pre-image ⊩⎻" 'ext x = (fun12 _ _ (or_f_minus _ _) (rel x)).