]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/formal_topology/overlap/o-saturations.ma
9b68972b42cd7aadf23784edd3129e3730706cb3
[helm.git] / helm / software / matita / contribs / formal_topology / overlap / o-saturations.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "o-algebra.ma".
16
17 definition hint1: OA → Type ≝ λc:OA.carr (oa_P c).
18 coercion hint1.
19
20 definition hint2: ∀C.hint1 C → carr1 ((λx.x) (setoid1_of_setoid (oa_P C))).
21 intros; assumption;
22 qed.
23 coercion hint2. 
24
25 alias symbol "eq" = "setoid1 eq".
26 definition is_saturation ≝
27  λC:OA.λA:C → C.
28   ∀U,V. (U ≤ A V) = (A U ≤ A V).
29
30 definition is_reduction ≝
31  λC:OA.λJ:C → C.
32     ∀U,V. (J U ≤ V) = (J U ≤ J V).
33
34 theorem saturation_expansive: ∀C,A. is_saturation C A → ∀U. U ≤ A U.
35  intros; apply (fi ?? (H ??)); apply (oa_leq_refl C).
36 qed.
37
38 theorem saturation_monotone:
39  ∀C,A. is_saturation C A →
40   ∀U,V:C. U ≤ V → A U ≤ A V.
41  intros; apply (if ?? (H ??)); apply (oa_leq_trans C);
42   [apply V|3: apply saturation_expansive ]
43  assumption.
44 qed.
45
46 theorem saturation_idempotent: ∀C,A. is_saturation C A → ∀U. 
47  eq (oa_P C) (A (A U)) (A U).
48  intros; apply (oa_leq_antisym C);
49   [ apply (if ?? (H (A U) U)); apply (oa_leq_refl C).
50   | apply saturation_expansive; assumption]
51 qed.