2 record powerset (A : Type) : Type := { content : A → CProp }.
4 notation > "Ω ^ A" non associative with precedence 50 for @{'P $A}.
5 notation "Ω \sup A" non associative with precedence 50 for @{'P $A}.
6 interpretation "Powerset" 'P A = (powerset A).
8 record AxiomSet : Type := {
14 notation > "∀ident a∈A.P" right associative with precedence 20
15 for @{ ∀${ident a} : S $A. $P }.
16 notation > "λident a∈A.P" right associative with precedence 20
17 for @{ λ${ident a} : S $A. $P }.
19 notation "'I'" non associative with precedence 90 for @{'I}.
20 interpretation "I" 'I = (I_ _).
21 notation < "'I' \lpar a \rpar" non associative with precedence 90 for @{'I1 $a}.
22 interpretation "I a" 'I1 a = (I_ _ a).
23 notation "'C'" non associative with precedence 90 for @{'C}.
24 interpretation "C" 'C = (C_ _).
25 notation < "'C' \lpar a \rpar" non associative with precedence 90 for @{'C1 $a}.
26 interpretation "C a" 'C1 a = (C_ _ a).
27 notation < "'C' \lpar a , i \rpar" non associative with precedence 90 for @{'C2 $a $i}.
28 interpretation "C a i" 'C2 a i = (C_ _ a i).
30 definition in_subset :=
31 λA:AxiomSet.λa∈A.λU:Ω^A.content A U a.
33 notation "hvbox(a break εU)" non associative with precedence 50 for
35 interpretation "In subset" 'in_subset a U = (in_subset _ a U).
37 definition for_all ≝ λA:AxiomSet.λU:Ω^A.λP:A → CProp.∀x.xεU → P x.
39 inductive covers (A : AxiomSet) (U : Ω ^ A) : A → CProp :=
40 | refl_ : ∀a.aεU → covers A U a
41 | infinity_ : ∀a.∀i : I a. for_all A (C a i) (covers A U) → covers A U a.
43 notation "'refl'" non associative with precedence 90 for @{'refl}.
44 interpretation "refl" 'refl = (refl_ _ _ _).
46 notation "'infinity'" non associative with precedence 90 for @{'infinity}.
47 interpretation "infinity" 'infinity = (infinity_ _ _ _).
49 notation "U ⊲ V" non associative with precedence 45
50 for @{ 'covers_subsets $U $V}.
51 interpretation "Covers subsets" 'covers_subsets U V = (for_all _ U (covers _ V)).
52 interpretation "Covers elem subset" 'covers_subsets U V = (covers _ V U).
54 definition subseteq := λA:AxiomSet.λU,V:Ω^A.∀x.xεU → xεV.
56 interpretation "subseteq" 'subseteq u v = (subseteq _ u v).
59 definition covers_elim_ ≝
60 λA:AxiomSet.λU,P: Ω^A.λH1: U ⊆ P.
61 λH2:∀a∈A.∀j:I a. C a j ⊲ U → C a j ⊆ P → aεP.
62 let rec aux (a:A) (p:a ⊲ U) on p : aεP ≝
63 match p return λr.λ_:r ⊲ U.r ε P with
65 | infinity_ a j q ⇒ H2 a j q (λb.λr. aux b (q b r))]
69 interpretation "char" 'subset p = (mk_powerset _ p).
71 definition covers_elim :
72 ∀A:AxiomSet.∀U: Ω^A.∀P:A→CProp.∀H1: U ⊆ {x | P x}.
73 ∀H2:∀a∈A.∀j:I a. C a j ⊲ U → C a j ⊆ {x | P x} → P a.
75 change in ⊢ (?→?→?→?→?→?→?→%) with (aε{x|P x});
76 intros 3; apply covers_elim_;
79 theorem trans_: ∀A:AxiomSet.∀a∈A.∀U,V. a ⊲ U → U ⊲ V → a ⊲ V.
81 elim H using covers_elim;
82 [ intros 2; apply (H1 ? H2);
83 | intros; apply (infinity j);
84 intros 2; apply (H3 ? H4);]
87 notation "'trans'" non associative with precedence 90 for @{'trans}.
88 interpretation "trans" 'trans = (trans_ _ _).