1 include "logic/equality.ma".
3 (* Inclusion of: BOO022-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : BOO022-1 : TPTP v3.2.0. Released v2.2.0. *)
9 (* Domain : Boolean Algebra *)
11 (* Problem : A Basis for Boolean Algebra *)
13 (* Version : [MP96] (equality) axioms. *)
15 (* English : This ntheorem starts with a (self-dual independent) 6-basis *)
17 (* for Boolean algebra and derives associativity of product. *)
19 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
21 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
23 (* Source : [McC98] *)
25 (* Names : DUAL-BA-1 [MP96] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.14 v3.2.0, 0.07 v3.1.0, 0.22 v2.7.0, 0.00 v2.2.1 *)
31 (* Syntax : Number of clauses : 7 ( 0 non-Horn; 7 unit; 1 RR) *)
33 (* Number of atoms : 7 ( 7 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 8 ( 5 constant; 0-2 arity) *)
41 (* Number of variables : 12 ( 2 singleton) *)
43 (* Maximal term depth : 3 ( 2 average) *)
45 (* Comments : The other part of this problem is to prove commutativity. *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Boolean Algebra: *)
51 (* ----Denial of conclusion: *)
52 ntheorem prove_associativity_of_multiply:
53 ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
55 ∀add:∀_:Univ.∀_:Univ.Univ.
58 ∀inverse:∀_:Univ.Univ.
59 ∀multiply:∀_:Univ.∀_:Univ.Univ.
62 ∀H0:∀X:Univ.eq Univ (multiply X (inverse X)) n0.
63 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add Y X) (add Z X)).
64 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (add (multiply X Y) Y) Y.
65 ∀H3:∀X:Univ.eq Univ (add X (inverse X)) n1.
66 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply Y X) (multiply Z X)).
67 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) Y) Y.eq Univ (multiply (multiply a b) c) (multiply a (multiply b c))
87 nauto by H0,H1,H2,H3,H4,H5;
90 (* -------------------------------------------------------------------------- *)