1 include "logic/equality.ma".
3 (* Inclusion of: COL002-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL002-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Weak fixed point for S, B, C, and I *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : The weak fixed point property holds for the set P consisting *)
17 (* of the combinators S, B, C, and I, where ((Sx)y)z = (xz)(yz), *)
19 (* ((Bx)y)z = x(yz), ((Cx)y)z = (xz)y, and Ix = x. *)
21 (* Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
25 (* Names : C1.1 [WM88] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.1.0, 0.13 v2.0.0 *)
31 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR) *)
33 (* Number of atoms : 5 ( 5 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 6 ( 5 constant; 0-2 arity) *)
41 (* Number of variables : 11 ( 0 singleton) *)
43 (* Maximal term depth : 4 ( 3 average) *)
47 (* -------------------------------------------------------------------------- *)
48 ntheorem prove_fixed_point:
49 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
50 ∀apply:∀_:Univ.∀_:Univ.Univ.
56 ∀H0:∀X:Univ.eq Univ (apply i X) X.
57 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply c X) Y) Z) (apply (apply X Z) Y).
58 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).
59 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ Y (apply fixed_pt Y))
75 napply (ex_intro ? ? ? ?) ##[
77 nauto by H0,H1,H2,H3 ##;
79 ntry (nassumption) ##;
82 (* -------------------------------------------------------------------------- *)