1 include "logic/equality.ma".
3 (* Inclusion of: COL015-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL015-1 : TPTP v3.2.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Weak fixed point for Q and M *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : The weak fixed point property holds for the set P consisting *)
17 (* of the combinators Q and M, where Mx = xx, ((Qx)y)z = y(xz). *)
19 (* Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi *)
21 (* : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem *)
23 (* : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
25 (* : [MW88] McCune & Wos (1988), Some Fixed Point Problems in Comb *)
29 (* Names : - [MW88] *)
31 (* Status : Unsatisfiable *)
33 (* Rating : 0.00 v2.0.0 *)
35 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
37 (* Number of atoms : 3 ( 3 equality) *)
39 (* Maximal clause size : 1 ( 1 average) *)
41 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
43 (* Number of functors : 4 ( 3 constant; 0-2 arity) *)
45 (* Number of variables : 5 ( 0 singleton) *)
47 (* Maximal term depth : 4 ( 2 average) *)
51 (* -------------------------------------------------------------------------- *)
52 ntheorem prove_fixed_point:
53 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
54 ∀apply:∀_:Univ.∀_:Univ.Univ.
58 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply q X) Y) Z) (apply Y (apply X Z)).
59 ∀H1:∀X:Univ.eq Univ (apply m X) (apply X X).∃Y:Univ.eq Univ Y (apply combinator Y))
71 napply (ex_intro ? ? ? ?) ##[
77 (* -------------------------------------------------------------------------- *)