1 include "logic/equality.ma".
3 (* Inclusion of: COL044-6.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL044-6 : TPTP v3.2.0. Released v2.1.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Strong fixed point for B and N *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* Theorem formulation : The fixed point is provided and checked. *)
17 (* English : The strong fixed point property holds for the set *)
19 (* P consisting of the combinators B and N, where ((Bx)y)z *)
21 (* = x(yz), ((Nx)y)z = ((xz)y)z. *)
23 (* Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
25 (* : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St *)
31 (* Status : Unsatisfiable *)
33 (* Rating : 0.71 v3.2.0, 0.64 v3.1.0, 0.56 v2.7.0, 0.82 v2.6.0, 0.67 v2.5.0, 0.50 v2.4.0, 0.67 v2.2.1, 0.88 v2.2.0, 0.80 v2.1.0 *)
35 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 2 RR) *)
37 (* Number of atoms : 4 ( 4 equality) *)
39 (* Maximal clause size : 1 ( 1 average) *)
41 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
43 (* Number of functors : 5 ( 4 constant; 0-2 arity) *)
45 (* Number of variables : 6 ( 0 singleton) *)
47 (* Maximal term depth : 12 ( 4 average) *)
51 (* -------------------------------------------------------------------------- *)
52 ntheorem prove_strong_fixed_point:
53 ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
54 ∀apply:∀_:Univ.∀_:Univ.Univ.
58 ∀strong_fixed_point:Univ.
59 ∀H0:eq Univ strong_fixed_point (apply (apply b (apply (apply b (apply (apply n (apply (apply b b) (apply (apply n (apply (apply b b) n)) n))) n)) b)) b).
60 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply n X) Y) Z) (apply (apply (apply X Z) Y) Z).
61 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).eq Univ (apply strong_fixed_point fixed_pt) (apply fixed_pt (apply strong_fixed_point fixed_pt))
78 (* -------------------------------------------------------------------------- *)