1 include "logic/equality.ma".
3 (* Inclusion of: GRP169-2.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP169-2 : TPTP v3.2.0. Bugfixed v1.2.1. *)
9 (* Domain : Group Theory (Lattice Ordered) *)
11 (* Problem : Inverses reverse inequalities *)
13 (* Version : [Fuc94] (equality) axioms. *)
15 (* Theorem formulation : Dual. *)
19 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
21 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
23 (* Source : [Sch95] *)
25 (* Names : p02b [Sch95] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.43 v2.0.0 *)
31 (* Syntax : Number of clauses : 17 ( 0 non-Horn; 17 unit; 2 RR) *)
33 (* Number of atoms : 17 ( 17 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 7 ( 3 constant; 0-2 arity) *)
41 (* Number of variables : 33 ( 2 singleton) *)
43 (* Maximal term depth : 3 ( 2 average) *)
45 (* Comments : ORDERING LPO inverse > product > greatest_lower_bound > *)
47 (* least_upper_bound > identity > a > b *)
49 (* : ORDERING LPO greatest_lower_bound > least_upper_bound > *)
51 (* inverse > product > identity > a > b *)
53 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
55 (* -------------------------------------------------------------------------- *)
57 (* ----Include equality group theory axioms *)
59 (* Inclusion of: Axioms/GRP004-0.ax *)
61 (* -------------------------------------------------------------------------- *)
63 (* File : GRP004-0 : TPTP v3.2.0. Released v1.0.0. *)
65 (* Domain : Group Theory *)
67 (* Axioms : Group theory (equality) axioms *)
69 (* Version : [MOW76] (equality) axioms : *)
71 (* Reduced > Complete. *)
75 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
77 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
85 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
87 (* Number of literals : 3 ( 3 equality) *)
89 (* Maximal clause size : 1 ( 1 average) *)
91 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
93 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
95 (* Number of variables : 5 ( 0 singleton) *)
97 (* Maximal term depth : 3 ( 2 average) *)
99 (* Comments : [MOW76] also contains redundant right_identity and *)
101 (* right_inverse axioms. *)
103 (* : These axioms are also used in [Wos88] p.186, also with *)
105 (* right_identity and right_inverse. *)
107 (* -------------------------------------------------------------------------- *)
109 (* ----For any x and y in the group x*y is also in the group. No clause *)
111 (* ----is needed here since this is an instance of reflexivity *)
113 (* ----There exists an identity element *)
115 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
117 (* ----= identity. *)
119 (* ----The operation '*' is associative *)
121 (* -------------------------------------------------------------------------- *)
123 (* ----Include Lattice ordered group (equality) axioms *)
125 (* Inclusion of: Axioms/GRP004-2.ax *)
127 (* -------------------------------------------------------------------------- *)
129 (* File : GRP004-2 : TPTP v3.2.0. Bugfixed v1.2.0. *)
131 (* Domain : Group Theory (Lattice Ordered) *)
133 (* Axioms : Lattice ordered group (equality) axioms *)
135 (* Version : [Fuc94] (equality) axioms. *)
139 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
141 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
143 (* Source : [Sch95] *)
149 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
151 (* Number of literals : 12 ( 12 equality) *)
153 (* Maximal clause size : 1 ( 1 average) *)
155 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
157 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
159 (* Number of variables : 28 ( 2 singleton) *)
161 (* Maximal term depth : 3 ( 2 average) *)
163 (* Comments : Requires GRP004-0.ax *)
165 (* -------------------------------------------------------------------------- *)
167 (* ----Specification of the least upper bound and greatest lower bound *)
169 (* ----Monotony of multiply *)
171 (* -------------------------------------------------------------------------- *)
173 (* -------------------------------------------------------------------------- *)
175 ∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
178 ∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
180 ∀inverse:∀_:Univ.Univ.
181 ∀least_upper_bound:∀_:Univ.∀_:Univ.Univ.
182 ∀multiply:∀_:Univ.∀_:Univ.Univ.
183 ∀H0:eq Univ (greatest_lower_bound (inverse a) (inverse b)) (inverse a).
184 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
185 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
186 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
187 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
188 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
189 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
190 ∀H7:∀X:Univ.eq Univ (greatest_lower_bound X X) X.
191 ∀H8:∀X:Univ.eq Univ (least_upper_bound X X) X.
192 ∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
193 ∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
194 ∀H11:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
195 ∀H12:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
196 ∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
197 ∀H14:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
198 ∀H15:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound a b) b
206 #greatest_lower_bound.
227 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15;
230 (* -------------------------------------------------------------------------- *)