1 include "logic/equality.ma".
3 (* Inclusion of: GRP609-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP609-1 : TPTP v3.2.0. Released v2.6.0. *)
9 (* Domain : Group Theory (Abelian) *)
11 (* Problem : Axiom for Abelian group theory, in double div and inv, part 1 *)
13 (* Version : [McC93] (equality) axioms. *)
17 (* Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr *)
23 (* Status : Unsatisfiable *)
25 (* Rating : 0.07 v3.1.0, 0.11 v2.7.0, 0.00 v2.6.0 *)
27 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
29 (* Number of atoms : 3 ( 3 equality) *)
31 (* Maximal clause size : 1 ( 1 average) *)
33 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
35 (* Number of functors : 5 ( 2 constant; 0-2 arity) *)
37 (* Number of variables : 5 ( 0 singleton) *)
39 (* Maximal term depth : 7 ( 3 average) *)
41 (* Comments : A UEQ part of GRP110-1 *)
43 (* -------------------------------------------------------------------------- *)
44 ntheorem prove_these_axioms_1:
45 ∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.
48 ∀double_divide:∀_:Univ.∀_:Univ.Univ.
49 ∀inverse:∀_:Univ.Univ.
50 ∀multiply:∀_:Univ.∀_:Univ.Univ.
51 ∀H0:∀A:Univ.∀B:Univ.eq Univ (multiply A B) (inverse (double_divide B A)).
52 ∀H1:∀A:Univ.∀B:Univ.∀C:Univ.eq Univ (inverse (double_divide (inverse (double_divide (inverse (double_divide A B)) C)) (double_divide A C))) B.eq Univ (multiply (inverse a1) a1) (multiply (inverse b1) b1)
68 (* -------------------------------------------------------------------------- *)