1 include "logic/equality.ma".
3 (* Inclusion of: LAT124-1.p *)
5 (* ------------------------------------------------------------------------------ *)
7 (* File : LAT124-1 : TPTP v3.2.0. Released v3.1.0. *)
9 (* Domain : Lattice Theory *)
11 (* Problem : Huntington equation H69 is independent of H32_dual *)
13 (* Version : [McC05] (equality) axioms : Especial. *)
15 (* English : Show that Huntington equation H32_dual does not imply Huntington *)
17 (* equation H69 in lattice theory. *)
19 (* Refs : [McC05] McCune (2005), Email to Geoff Sutcliffe *)
21 (* Source : [McC05] *)
25 (* Status : Satisfiable *)
27 (* Rating : 0.67 v3.2.0, 1.00 v3.1.0 *)
29 (* Syntax : Number of clauses : 10 ( 0 non-Horn; 10 unit; 1 RR) *)
31 (* Number of atoms : 10 ( 10 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 5 ( 3 constant; 0-2 arity) *)
39 (* Number of variables : 20 ( 2 singleton) *)
41 (* Maximal term depth : 6 ( 3 average) *)
45 (* ------------------------------------------------------------------------------ *)
47 (* ----Include Lattice theory (equality) axioms *)
49 (* Inclusion of: Axioms/LAT001-0.ax *)
51 (* -------------------------------------------------------------------------- *)
53 (* File : LAT001-0 : TPTP v3.2.0. Released v1.0.0. *)
55 (* Domain : Lattice Theory *)
57 (* Axioms : Lattice theory (equality) axioms *)
59 (* Version : [McC88] (equality) axioms. *)
63 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
65 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
67 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
69 (* Source : [McC88] *)
75 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
77 (* Number of literals : 8 ( 8 equality) *)
79 (* Maximal clause size : 1 ( 1 average) *)
81 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
83 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
85 (* Number of variables : 16 ( 2 singleton) *)
87 (* Maximal term depth : 3 ( 2 average) *)
91 (* -------------------------------------------------------------------------- *)
93 (* ----The following 8 clauses characterise lattices *)
95 (* -------------------------------------------------------------------------- *)
97 (* ------------------------------------------------------------------------------ *)
99 ∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
103 ∀join:∀_:Univ.∀_:Univ.Univ.
104 ∀meet:∀_:Univ.∀_:Univ.Univ.
105 ∀H0:∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y (join X (join Z U)))) (join X (meet Y (join Z (meet (join X U) (join Y U))))).
106 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).
107 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).
108 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
109 ∀H4:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
110 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
111 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
112 ∀H7:∀X:Univ.eq Univ (join X X) X.
113 ∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b c)) (join (meet a (join c (meet a b))) (meet a (join b (meet a c))))
134 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8;
137 (* ------------------------------------------------------------------------------ *)