1 include "logic/equality.ma".
3 (* Inclusion of: LCL165-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LCL165-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Logic Calculi (Wajsberg Algebra) *)
11 (* Problem : A ntheorem in Wajsberg algebras *)
13 (* Version : [Bon91] (equality) axioms. *)
17 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
19 (* : [AB90] Anantharaman & Bonacina (1990), An Application of the *)
21 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
23 (* Source : [Bon91] *)
25 (* Names : Third problem [Bon91] *)
27 (* Status : Satisfiable *)
29 (* Rating : 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.5.0, 0.67 v2.4.0, 1.00 v2.0.0 *)
31 (* Syntax : Number of clauses : 11 ( 0 non-Horn; 11 unit; 1 RR) *)
33 (* Number of atoms : 11 ( 11 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 6 ( 2 constant; 0-2 arity) *)
41 (* Number of variables : 22 ( 0 singleton) *)
43 (* Maximal term depth : 5 ( 3 average) *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Include Wajsberg algebra axioms *)
51 (* Inclusion of: Axioms/LCL001-0.ax *)
53 (* -------------------------------------------------------------------------- *)
55 (* File : LCL001-0 : TPTP v3.7.0. Released v1.0.0. *)
57 (* Domain : Logic Calculi (Wajsberg Algebras) *)
59 (* Axioms : Wajsberg algebra axioms *)
61 (* Version : [Bon91] (equality) axioms. *)
65 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
67 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
69 (* : [MW92] McCune & Wos (1992), Experiments in Automated Deductio *)
73 (* Names : MV Sentential Calculus [MW92] *)
77 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 0 RR) *)
79 (* Number of atoms : 4 ( 4 equality) *)
81 (* Maximal clause size : 1 ( 1 average) *)
83 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
85 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
87 (* Number of variables : 8 ( 0 singleton) *)
89 (* Maximal term depth : 4 ( 2 average) *)
93 (* -------------------------------------------------------------------------- *)
95 (* -------------------------------------------------------------------------- *)
97 (* ----Include Wajsberg algebra and and or definitions *)
99 (* Inclusion of: Axioms/LCL001-2.ax *)
101 (* -------------------------------------------------------------------------- *)
103 (* File : LCL001-2 : TPTP v3.7.0. Released v1.0.0. *)
105 (* Domain : Logic Calculi (Wajsberg Algebras) *)
107 (* Axioms : Wajsberg algebra AND and OR definitions *)
109 (* Version : [AB90] (equality) axioms. *)
113 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
115 (* : [AB90] Anantharaman & Bonacina (1990), An Application of the *)
117 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
119 (* Source : [Bon91] *)
125 (* Syntax : Number of clauses : 6 ( 0 non-Horn; 6 unit; 0 RR) *)
127 (* Number of atoms : 6 ( 6 equality) *)
129 (* Maximal clause size : 1 ( 1 average) *)
131 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
133 (* Number of functors : 4 ( 0 constant; 1-2 arity) *)
135 (* Number of variables : 14 ( 0 singleton) *)
137 (* Maximal term depth : 4 ( 3 average) *)
139 (* Comments : Requires LCL001-0.ax *)
141 (* -------------------------------------------------------------------------- *)
143 (* ----Definitions of or and and, which are AC *)
145 (* -------------------------------------------------------------------------- *)
147 (* -------------------------------------------------------------------------- *)
148 ntheorem prove_wajsberg_ntheorem:
149 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
150 ∀myand:∀_:Univ.∀_:Univ.Univ.
151 ∀implies:∀_:Univ.∀_:Univ.Univ.
153 ∀or:∀_:Univ.∀_:Univ.Univ.
156 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (myand X Y) (myand Y X).
157 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (myand (myand X Y) Z) (myand X (myand Y Z)).
158 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (myand X Y) (not (or (not X) (not Y))).
159 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (or X Y) (or Y X).
160 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (or (or X Y) Z) (or X (or Y Z)).
161 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (or X Y) (implies (not X) Y).
162 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
163 ∀H7:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
164 ∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
165 ∀H9:∀X:Univ.eq Univ (implies truth X) X.eq Univ (not (or (myand x (or x x)) (myand x x))) (myand (not x) (or (or (not x) (not x)) (myand (not x) (not x)))))
187 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
188 ntry (nassumption) ##;
191 (* -------------------------------------------------------------------------- *)