1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* ********************************************************************** *)
16 (* Progetto FreeScale *)
18 (* Sviluppato da: Cosimo Oliboni, oliboni@cs.unibo.it *)
19 (* Cosimo Oliboni, oliboni@cs.unibo.it *)
21 (* ********************************************************************** *)
23 include "freescale/bool_lemmas.ma".
24 include "freescale/bitrigesim.ma".
30 ndefinition bitrigesim_destruct1 :
31 Πt2:bitrigesim.ΠP:Prop.t00 = t2 → match t2 with [ t00 ⇒ P → P | _ ⇒ P ].
35 ##[ ##1: napply (λx:P.x)
36 ##| ##*: napply False_ind;
37 nchange with (match t00 with [ t00 ⇒ False | _ ⇒ True ]);
38 nrewrite > H; nnormalize; napply I
42 ndefinition bitrigesim_destruct2 :
43 Πt2:bitrigesim.ΠP:Prop.t01 = t2 → match t2 with [ t01 ⇒ P → P | _ ⇒ P ].
47 ##[ ##2: napply (λx:P.x)
48 ##| ##*: napply False_ind;
49 nchange with (match t01 with [ t01 ⇒ False | _ ⇒ True ]);
50 nrewrite > H; nnormalize; napply I
54 ndefinition bitrigesim_destruct3 :
55 Πt2:bitrigesim.ΠP:Prop.t02 = t2 → match t2 with [ t02 ⇒ P → P | _ ⇒ P ].
59 ##[ ##3: napply (λx:P.x)
60 ##| ##*: napply False_ind;
61 nchange with (match t02 with [ t02 ⇒ False | _ ⇒ True ]);
62 nrewrite > H; nnormalize; napply I
66 ndefinition bitrigesim_destruct4 :
67 Πt2:bitrigesim.ΠP:Prop.t03 = t2 → match t2 with [ t03 ⇒ P → P | _ ⇒ P ].
71 ##[ ##4: napply (λx:P.x)
72 ##| ##*: napply False_ind;
73 nchange with (match t03 with [ t03 ⇒ False | _ ⇒ True ]);
74 nrewrite > H; nnormalize; napply I
78 ndefinition bitrigesim_destruct5 :
79 Πt2:bitrigesim.ΠP:Prop.t04 = t2 → match t2 with [ t04 ⇒ P → P | _ ⇒ P ].
83 ##[ ##5: napply (λx:P.x)
84 ##| ##*: napply False_ind;
85 nchange with (match t04 with [ t04 ⇒ False | _ ⇒ True ]);
86 nrewrite > H; nnormalize; napply I
90 ndefinition bitrigesim_destruct6 :
91 Πt2:bitrigesim.ΠP:Prop.t05 = t2 → match t2 with [ t05 ⇒ P → P | _ ⇒ P ].
95 ##[ ##6: napply (λx:P.x)
96 ##| ##*: napply False_ind;
97 nchange with (match t05 with [ t05 ⇒ False | _ ⇒ True ]);
98 nrewrite > H; nnormalize; napply I
102 ndefinition bitrigesim_destruct7 :
103 Πt2:bitrigesim.ΠP:Prop.t06 = t2 → match t2 with [ t06 ⇒ P → P | _ ⇒ P ].
107 ##[ ##7: napply (λx:P.x)
108 ##| ##*: napply False_ind;
109 nchange with (match t06 with [ t06 ⇒ False | _ ⇒ True ]);
110 nrewrite > H; nnormalize; napply I
114 ndefinition bitrigesim_destruct8 :
115 Πt2:bitrigesim.ΠP:Prop.t07 = t2 → match t2 with [ t07 ⇒ P → P | _ ⇒ P ].
119 ##[ ##8: napply (λx:P.x)
120 ##| ##*: napply False_ind;
121 nchange with (match t07 with [ t07 ⇒ False | _ ⇒ True ]);
122 nrewrite > H; nnormalize; napply I
126 ndefinition bitrigesim_destruct9 :
127 Πt2:bitrigesim.ΠP:Prop.t08 = t2 → match t2 with [ t08 ⇒ P → P | _ ⇒ P ].
131 ##[ ##9: napply (λx:P.x)
132 ##| ##*: napply False_ind;
133 nchange with (match t08 with [ t08 ⇒ False | _ ⇒ True ]);
134 nrewrite > H; nnormalize; napply I
138 ndefinition bitrigesim_destruct10 :
139 Πt2:bitrigesim.ΠP:Prop.t09 = t2 → match t2 with [ t09 ⇒ P → P | _ ⇒ P ].
143 ##[ ##10: napply (λx:P.x)
144 ##| ##*: napply False_ind;
145 nchange with (match t09 with [ t09 ⇒ False | _ ⇒ True ]);
146 nrewrite > H; nnormalize; napply I
150 ndefinition bitrigesim_destruct11 :
151 Πt2:bitrigesim.ΠP:Prop.t0A = t2 → match t2 with [ t0A ⇒ P → P | _ ⇒ P ].
155 ##[ ##11: napply (λx:P.x)
156 ##| ##*: napply False_ind;
157 nchange with (match t0A with [ t0A ⇒ False | _ ⇒ True ]);
158 nrewrite > H; nnormalize; napply I
162 ndefinition bitrigesim_destruct12 :
163 Πt2:bitrigesim.ΠP:Prop.t0B = t2 → match t2 with [ t0B ⇒ P → P | _ ⇒ P ].
167 ##[ ##12: napply (λx:P.x)
168 ##| ##*: napply False_ind;
169 nchange with (match t0B with [ t0B ⇒ False | _ ⇒ True ]);
170 nrewrite > H; nnormalize; napply I
174 ndefinition bitrigesim_destruct13 :
175 Πt2:bitrigesim.ΠP:Prop.t0C = t2 → match t2 with [ t0C ⇒ P → P | _ ⇒ P ].
179 ##[ ##13: napply (λx:P.x)
180 ##| ##*: napply False_ind;
181 nchange with (match t0C with [ t0C ⇒ False | _ ⇒ True ]);
182 nrewrite > H; nnormalize; napply I
186 ndefinition bitrigesim_destruct14 :
187 Πt2:bitrigesim.ΠP:Prop.t0D = t2 → match t2 with [ t0D ⇒ P → P | _ ⇒ P ].
191 ##[ ##14: napply (λx:P.x)
192 ##| ##*: napply False_ind;
193 nchange with (match t0D with [ t0D ⇒ False | _ ⇒ True ]);
194 nrewrite > H; nnormalize; napply I
198 ndefinition bitrigesim_destruct15 :
199 Πt2:bitrigesim.ΠP:Prop.t0E = t2 → match t2 with [ t0E ⇒ P → P | _ ⇒ P ].
203 ##[ ##15: napply (λx:P.x)
204 ##| ##*: napply False_ind;
205 nchange with (match t0E with [ t0E ⇒ False | _ ⇒ True ]);
206 nrewrite > H; nnormalize; napply I
210 ndefinition bitrigesim_destruct16 :
211 Πt2:bitrigesim.ΠP:Prop.t0F = t2 → match t2 with [ t0F ⇒ P → P | _ ⇒ P ].
215 ##[ ##16: napply (λx:P.x)
216 ##| ##*: napply False_ind;
217 nchange with (match t0F with [ t0F ⇒ False | _ ⇒ True ]);
218 nrewrite > H; nnormalize; napply I
222 ndefinition bitrigesim_destruct17 :
223 Πt2:bitrigesim.ΠP:Prop.t10 = t2 → match t2 with [ t10 ⇒ P → P | _ ⇒ P ].
227 ##[ ##17: napply (λx:P.x)
228 ##| ##*: napply False_ind;
229 nchange with (match t10 with [ t10 ⇒ False | _ ⇒ True ]);
230 nrewrite > H; nnormalize; napply I
234 ndefinition bitrigesim_destruct18 :
235 Πt2:bitrigesim.ΠP:Prop.t11 = t2 → match t2 with [ t11 ⇒ P → P | _ ⇒ P ].
239 ##[ ##18: napply (λx:P.x)
240 ##| ##*: napply False_ind;
241 nchange with (match t11 with [ t11 ⇒ False | _ ⇒ True ]);
242 nrewrite > H; nnormalize; napply I
246 ndefinition bitrigesim_destruct19 :
247 Πt2:bitrigesim.ΠP:Prop.t12 = t2 → match t2 with [ t12 ⇒ P → P | _ ⇒ P ].
251 ##[ ##19: napply (λx:P.x)
252 ##| ##*: napply False_ind;
253 nchange with (match t12 with [ t12 ⇒ False | _ ⇒ True ]);
254 nrewrite > H; nnormalize; napply I
258 ndefinition bitrigesim_destruct20 :
259 Πt2:bitrigesim.ΠP:Prop.t13 = t2 → match t2 with [ t13 ⇒ P → P | _ ⇒ P ].
263 ##[ ##20: napply (λx:P.x)
264 ##| ##*: napply False_ind;
265 nchange with (match t13 with [ t13 ⇒ False | _ ⇒ True ]);
266 nrewrite > H; nnormalize; napply I
270 ndefinition bitrigesim_destruct21 :
271 Πt2:bitrigesim.ΠP:Prop.t14 = t2 → match t2 with [ t14 ⇒ P → P | _ ⇒ P ].
275 ##[ ##21: napply (λx:P.x)
276 ##| ##*: napply False_ind;
277 nchange with (match t14 with [ t14 ⇒ False | _ ⇒ True ]);
278 nrewrite > H; nnormalize; napply I
282 ndefinition bitrigesim_destruct22 :
283 Πt2:bitrigesim.ΠP:Prop.t15 = t2 → match t2 with [ t15 ⇒ P → P | _ ⇒ P ].
287 ##[ ##22: napply (λx:P.x)
288 ##| ##*: napply False_ind;
289 nchange with (match t15 with [ t15 ⇒ False | _ ⇒ True ]);
290 nrewrite > H; nnormalize; napply I
294 ndefinition bitrigesim_destruct23 :
295 Πt2:bitrigesim.ΠP:Prop.t16 = t2 → match t2 with [ t16 ⇒ P → P | _ ⇒ P ].
299 ##[ ##23: napply (λx:P.x)
300 ##| ##*: napply False_ind;
301 nchange with (match t16 with [ t16 ⇒ False | _ ⇒ True ]);
302 nrewrite > H; nnormalize; napply I
306 ndefinition bitrigesim_destruct24 :
307 Πt2:bitrigesim.ΠP:Prop.t17 = t2 → match t2 with [ t17 ⇒ P → P | _ ⇒ P ].
311 ##[ ##24: napply (λx:P.x)
312 ##| ##*: napply False_ind;
313 nchange with (match t17 with [ t17 ⇒ False | _ ⇒ True ]);
314 nrewrite > H; nnormalize; napply I
318 ndefinition bitrigesim_destruct25 :
319 Πt2:bitrigesim.ΠP:Prop.t18 = t2 → match t2 with [ t18 ⇒ P → P | _ ⇒ P ].
323 ##[ ##25: napply (λx:P.x)
324 ##| ##*: napply False_ind;
325 nchange with (match t18 with [ t18 ⇒ False | _ ⇒ True ]);
326 nrewrite > H; nnormalize; napply I
330 ndefinition bitrigesim_destruct26 :
331 Πt2:bitrigesim.ΠP:Prop.t19 = t2 → match t2 with [ t19 ⇒ P → P | _ ⇒ P ].
335 ##[ ##26: napply (λx:P.x)
336 ##| ##*: napply False_ind;
337 nchange with (match t19 with [ t19 ⇒ False | _ ⇒ True ]);
338 nrewrite > H; nnormalize; napply I
342 ndefinition bitrigesim_destruct27 :
343 Πt2:bitrigesim.ΠP:Prop.t1A = t2 → match t2 with [ t1A ⇒ P → P | _ ⇒ P ].
347 ##[ ##27: napply (λx:P.x)
348 ##| ##*: napply False_ind;
349 nchange with (match t1A with [ t1A ⇒ False | _ ⇒ True ]);
350 nrewrite > H; nnormalize; napply I
354 ndefinition bitrigesim_destruct28 :
355 Πt2:bitrigesim.ΠP:Prop.t1B = t2 → match t2 with [ t1B ⇒ P → P | _ ⇒ P ].
359 ##[ ##28: napply (λx:P.x)
360 ##| ##*: napply False_ind;
361 nchange with (match t1B with [ t1B ⇒ False | _ ⇒ True ]);
362 nrewrite > H; nnormalize; napply I
366 ndefinition bitrigesim_destruct29 :
367 Πt2:bitrigesim.ΠP:Prop.t1C = t2 → match t2 with [ t1C ⇒ P → P | _ ⇒ P ].
371 ##[ ##29: napply (λx:P.x)
372 ##| ##*: napply False_ind;
373 nchange with (match t1C with [ t1C ⇒ False | _ ⇒ True ]);
374 nrewrite > H; nnormalize; napply I
378 ndefinition bitrigesim_destruct30 :
379 Πt2:bitrigesim.ΠP:Prop.t1D = t2 → match t2 with [ t1D ⇒ P → P | _ ⇒ P ].
383 ##[ ##30: napply (λx:P.x)
384 ##| ##*: napply False_ind;
385 nchange with (match t1D with [ t1D ⇒ False | _ ⇒ True ]);
386 nrewrite > H; nnormalize; napply I
390 ndefinition bitrigesim_destruct31 :
391 Πt2:bitrigesim.ΠP:Prop.t1E = t2 → match t2 with [ t1E ⇒ P → P | _ ⇒ P ].
395 ##[ ##31: napply (λx:P.x)
396 ##| ##*: napply False_ind;
397 nchange with (match t1E with [ t1E ⇒ False | _ ⇒ True ]);
398 nrewrite > H; nnormalize; napply I
402 ndefinition bitrigesim_destruct32 :
403 Πt2:bitrigesim.ΠP:Prop.t1F = t2 → match t2 with [ t1F ⇒ P → P | _ ⇒ P ].
407 ##[ ##32: napply (λx:P.x)
408 ##| ##*: napply False_ind;
409 nchange with (match t1F with [ t1F ⇒ False | _ ⇒ True ]);
410 nrewrite > H; nnormalize; napply I
414 ndefinition bitrigesim_destruct_aux ≝
415 Πt1,t2:bitrigesim.ΠP:Prop.t1 = t2 →
417 [ t00 ⇒ match t2 with [ t00 ⇒ P → P | _ ⇒ P ]
418 | t01 ⇒ match t2 with [ t01 ⇒ P → P | _ ⇒ P ]
419 | t02 ⇒ match t2 with [ t02 ⇒ P → P | _ ⇒ P ]
420 | t03 ⇒ match t2 with [ t03 ⇒ P → P | _ ⇒ P ]
421 | t04 ⇒ match t2 with [ t04 ⇒ P → P | _ ⇒ P ]
422 | t05 ⇒ match t2 with [ t05 ⇒ P → P | _ ⇒ P ]
423 | t06 ⇒ match t2 with [ t06 ⇒ P → P | _ ⇒ P ]
424 | t07 ⇒ match t2 with [ t07 ⇒ P → P | _ ⇒ P ]
425 | t08 ⇒ match t2 with [ t08 ⇒ P → P | _ ⇒ P ]
426 | t09 ⇒ match t2 with [ t09 ⇒ P → P | _ ⇒ P ]
427 | t0A ⇒ match t2 with [ t0A ⇒ P → P | _ ⇒ P ]
428 | t0B ⇒ match t2 with [ t0B ⇒ P → P | _ ⇒ P ]
429 | t0C ⇒ match t2 with [ t0C ⇒ P → P | _ ⇒ P ]
430 | t0D ⇒ match t2 with [ t0D ⇒ P → P | _ ⇒ P ]
431 | t0E ⇒ match t2 with [ t0E ⇒ P → P | _ ⇒ P ]
432 | t0F ⇒ match t2 with [ t0F ⇒ P → P | _ ⇒ P ]
433 | t10 ⇒ match t2 with [ t10 ⇒ P → P | _ ⇒ P ]
434 | t11 ⇒ match t2 with [ t11 ⇒ P → P | _ ⇒ P ]
435 | t12 ⇒ match t2 with [ t12 ⇒ P → P | _ ⇒ P ]
436 | t13 ⇒ match t2 with [ t13 ⇒ P → P | _ ⇒ P ]
437 | t14 ⇒ match t2 with [ t14 ⇒ P → P | _ ⇒ P ]
438 | t15 ⇒ match t2 with [ t15 ⇒ P → P | _ ⇒ P ]
439 | t16 ⇒ match t2 with [ t16 ⇒ P → P | _ ⇒ P ]
440 | t17 ⇒ match t2 with [ t17 ⇒ P → P | _ ⇒ P ]
441 | t18 ⇒ match t2 with [ t18 ⇒ P → P | _ ⇒ P ]
442 | t19 ⇒ match t2 with [ t19 ⇒ P → P | _ ⇒ P ]
443 | t1A ⇒ match t2 with [ t1A ⇒ P → P | _ ⇒ P ]
444 | t1B ⇒ match t2 with [ t1B ⇒ P → P | _ ⇒ P ]
445 | t1C ⇒ match t2 with [ t1C ⇒ P → P | _ ⇒ P ]
446 | t1D ⇒ match t2 with [ t1D ⇒ P → P | _ ⇒ P ]
447 | t1E ⇒ match t2 with [ t1E ⇒ P → P | _ ⇒ P ]
448 | t1F ⇒ match t2 with [ t1F ⇒ P → P | _ ⇒ P ]
451 ndefinition bitrigesim_destruct : bitrigesim_destruct_aux.
454 ##[ ##1: napply bitrigesim_destruct1
455 ##| ##2: napply bitrigesim_destruct2
456 ##| ##3: napply bitrigesim_destruct3
457 ##| ##4: napply bitrigesim_destruct4
458 ##| ##5: napply bitrigesim_destruct5
459 ##| ##6: napply bitrigesim_destruct6
460 ##| ##7: napply bitrigesim_destruct7
461 ##| ##8: napply bitrigesim_destruct8
462 ##| ##9: napply bitrigesim_destruct9
463 ##| ##10: napply bitrigesim_destruct10
464 ##| ##11: napply bitrigesim_destruct11
465 ##| ##12: napply bitrigesim_destruct12
466 ##| ##13: napply bitrigesim_destruct13
467 ##| ##14: napply bitrigesim_destruct14
468 ##| ##15: napply bitrigesim_destruct15
469 ##| ##16: napply bitrigesim_destruct16
470 ##| ##17: napply bitrigesim_destruct17
471 ##| ##18: napply bitrigesim_destruct18
472 ##| ##19: napply bitrigesim_destruct19
473 ##| ##20: napply bitrigesim_destruct20
474 ##| ##21: napply bitrigesim_destruct21
475 ##| ##22: napply bitrigesim_destruct22
476 ##| ##23: napply bitrigesim_destruct23
477 ##| ##24: napply bitrigesim_destruct24
478 ##| ##25: napply bitrigesim_destruct25
479 ##| ##26: napply bitrigesim_destruct26
480 ##| ##27: napply bitrigesim_destruct27
481 ##| ##28: napply bitrigesim_destruct28
482 ##| ##29: napply bitrigesim_destruct29
483 ##| ##30: napply bitrigesim_destruct30
484 ##| ##31: napply bitrigesim_destruct31
485 ##| ##32: napply bitrigesim_destruct32
489 nlemma symmetric_eqbit : symmetricT bitrigesim bool eq_bit.
492 ##[ ##1: #t2; nelim t2; nnormalize; napply refl_eq
493 ##| ##2: #t2; nelim t2; nnormalize; napply refl_eq
494 ##| ##3: #t2; nelim t2; nnormalize; napply refl_eq
495 ##| ##4: #t2; nelim t2; nnormalize; napply refl_eq
496 ##| ##5: #t2; nelim t2; nnormalize; napply refl_eq
497 ##| ##6: #t2; nelim t2; nnormalize; napply refl_eq
498 ##| ##7: #t2; nelim t2; nnormalize; napply refl_eq
499 ##| ##8: #t2; nelim t2; nnormalize; napply refl_eq
500 ##| ##9: #t2; nelim t2; nnormalize; napply refl_eq
501 ##| ##10: #t2; nelim t2; nnormalize; napply refl_eq
502 ##| ##11: #t2; nelim t2; nnormalize; napply refl_eq
503 ##| ##12: #t2; nelim t2; nnormalize; napply refl_eq
504 ##| ##13: #t2; nelim t2; nnormalize; napply refl_eq
505 ##| ##14: #t2; nelim t2; nnormalize; napply refl_eq
506 ##| ##15: #t2; nelim t2; nnormalize; napply refl_eq
507 ##| ##16: #t2; nelim t2; nnormalize; napply refl_eq
508 ##| ##17: #t2; nelim t2; nnormalize; napply refl_eq
509 ##| ##18: #t2; nelim t2; nnormalize; napply refl_eq
510 ##| ##19: #t2; nelim t2; nnormalize; napply refl_eq
511 ##| ##20: #t2; nelim t2; nnormalize; napply refl_eq
512 ##| ##21: #t2; nelim t2; nnormalize; napply refl_eq
513 ##| ##22: #t2; nelim t2; nnormalize; napply refl_eq
514 ##| ##23: #t2; nelim t2; nnormalize; napply refl_eq
515 ##| ##24: #t2; nelim t2; nnormalize; napply refl_eq
516 ##| ##25: #t2; nelim t2; nnormalize; napply refl_eq
517 ##| ##26: #t2; nelim t2; nnormalize; napply refl_eq
518 ##| ##27: #t2; nelim t2; nnormalize; napply refl_eq
519 ##| ##28: #t2; nelim t2; nnormalize; napply refl_eq
520 ##| ##29: #t2; nelim t2; nnormalize; napply refl_eq
521 ##| ##30: #t2; nelim t2; nnormalize; napply refl_eq
522 ##| ##31: #t2; nelim t2; nnormalize; napply refl_eq
523 ##| ##32: #t2; nelim t2; nnormalize; napply refl_eq
527 nlemma eqbit_to_eq1 : ∀t2.eq_bit t00 t2 = true → t00 = t2.
528 #t2; ncases t2; nnormalize; #H; ##[ ##1: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
531 nlemma eqbit_to_eq2 : ∀t2.eq_bit t01 t2 = true → t01 = t2.
532 #t2; ncases t2; nnormalize; #H; ##[ ##2: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
535 nlemma eqbit_to_eq3 : ∀t2.eq_bit t02 t2 = true → t02 = t2.
536 #t2; ncases t2; nnormalize; #H; ##[ ##3: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
539 nlemma eqbit_to_eq4 : ∀t2.eq_bit t03 t2 = true → t03 = t2.
540 #t2; ncases t2; nnormalize; #H; ##[ ##4: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
543 nlemma eqbit_to_eq5 : ∀t2.eq_bit t04 t2 = true → t04 = t2.
544 #t2; ncases t2; nnormalize; #H; ##[ ##5: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
547 nlemma eqbit_to_eq6 : ∀t2.eq_bit t05 t2 = true → t05 = t2.
548 #t2; ncases t2; nnormalize; #H; ##[ ##6: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
551 nlemma eqbit_to_eq7 : ∀t2.eq_bit t06 t2 = true → t06 = t2.
552 #t2; ncases t2; nnormalize; #H; ##[ ##7: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
555 nlemma eqbit_to_eq8 : ∀t2.eq_bit t07 t2 = true → t07 = t2.
556 #t2; ncases t2; nnormalize; #H; ##[ ##8: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
559 nlemma eqbit_to_eq9 : ∀t2.eq_bit t08 t2 = true → t08 = t2.
560 #t2; ncases t2; nnormalize; #H; ##[ ##9: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
563 nlemma eqbit_to_eq10 : ∀t2.eq_bit t09 t2 = true → t09 = t2.
564 #t2; ncases t2; nnormalize; #H; ##[ ##10: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
567 nlemma eqbit_to_eq11 : ∀t2.eq_bit t0A t2 = true → t0A = t2.
568 #t2; ncases t2; nnormalize; #H; ##[ ##11: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
571 nlemma eqbit_to_eq12 : ∀t2.eq_bit t0B t2 = true → t0B = t2.
572 #t2; ncases t2; nnormalize; #H; ##[ ##12: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
575 nlemma eqbit_to_eq13 : ∀t2.eq_bit t0C t2 = true → t0C = t2.
576 #t2; ncases t2; nnormalize; #H; ##[ ##13: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
579 nlemma eqbit_to_eq14 : ∀t2.eq_bit t0D t2 = true → t0D = t2.
580 #t2; ncases t2; nnormalize; #H; ##[ ##14: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
583 nlemma eqbit_to_eq15 : ∀t2.eq_bit t0E t2 = true → t0E = t2.
584 #t2; ncases t2; nnormalize; #H; ##[ ##15: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
587 nlemma eqbit_to_eq16 : ∀t2.eq_bit t0F t2 = true → t0F = t2.
588 #t2; ncases t2; nnormalize; #H; ##[ ##16: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
591 nlemma eqbit_to_eq17 : ∀t2.eq_bit t10 t2 = true → t10 = t2.
592 #t2; ncases t2; nnormalize; #H; ##[ ##17: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
595 nlemma eqbit_to_eq18 : ∀t2.eq_bit t11 t2 = true → t11 = t2.
596 #t2; ncases t2; nnormalize; #H; ##[ ##18: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
599 nlemma eqbit_to_eq19 : ∀t2.eq_bit t12 t2 = true → t12 = t2.
600 #t2; ncases t2; nnormalize; #H; ##[ ##19: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
603 nlemma eqbit_to_eq20 : ∀t2.eq_bit t13 t2 = true → t13 = t2.
604 #t2; ncases t2; nnormalize; #H; ##[ ##20: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
607 nlemma eqbit_to_eq21 : ∀t2.eq_bit t14 t2 = true → t14 = t2.
608 #t2; ncases t2; nnormalize; #H; ##[ ##21: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
611 nlemma eqbit_to_eq22 : ∀t2.eq_bit t15 t2 = true → t15 = t2.
612 #t2; ncases t2; nnormalize; #H; ##[ ##22: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
615 nlemma eqbit_to_eq23 : ∀t2.eq_bit t16 t2 = true → t16 = t2.
616 #t2; ncases t2; nnormalize; #H; ##[ ##23: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
619 nlemma eqbit_to_eq24 : ∀t2.eq_bit t17 t2 = true → t17 = t2.
620 #t2; ncases t2; nnormalize; #H; ##[ ##24: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
623 nlemma eqbit_to_eq25 : ∀t2.eq_bit t18 t2 = true → t18 = t2.
624 #t2; ncases t2; nnormalize; #H; ##[ ##25: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
627 nlemma eqbit_to_eq26 : ∀t2.eq_bit t19 t2 = true → t19 = t2.
628 #t2; ncases t2; nnormalize; #H; ##[ ##26: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
631 nlemma eqbit_to_eq27 : ∀t2.eq_bit t1A t2 = true → t1A = t2.
632 #t2; ncases t2; nnormalize; #H; ##[ ##27: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
635 nlemma eqbit_to_eq28 : ∀t2.eq_bit t1B t2 = true → t1B = t2.
636 #t2; ncases t2; nnormalize; #H; ##[ ##28: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
639 nlemma eqbit_to_eq29 : ∀t2.eq_bit t1C t2 = true → t1C = t2.
640 #t2; ncases t2; nnormalize; #H; ##[ ##29: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
643 nlemma eqbit_to_eq30 : ∀t2.eq_bit t1D t2 = true → t1D = t2.
644 #t2; ncases t2; nnormalize; #H; ##[ ##30: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
647 nlemma eqbit_to_eq31 : ∀t2.eq_bit t1E t2 = true → t1E = t2.
648 #t2; ncases t2; nnormalize; #H; ##[ ##31: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
651 nlemma eqbit_to_eq32 : ∀t2.eq_bit t1F t2 = true → t1F = t2.
652 #t2; ncases t2; nnormalize; #H; ##[ ##32: napply refl_eq ##| ##*: napply (bool_destruct … H) ##]
655 nlemma eqbit_to_eq : ∀t1,t2.eq_bit t1 t2 = true → t1 = t2.
658 ##[ ##1: napply eqbit_to_eq1
659 ##| ##2: napply eqbit_to_eq2
660 ##| ##3: napply eqbit_to_eq3
661 ##| ##4: napply eqbit_to_eq4
662 ##| ##5: napply eqbit_to_eq5
663 ##| ##6: napply eqbit_to_eq6
664 ##| ##7: napply eqbit_to_eq7
665 ##| ##8: napply eqbit_to_eq8
666 ##| ##9: napply eqbit_to_eq9
667 ##| ##10: napply eqbit_to_eq10
668 ##| ##11: napply eqbit_to_eq11
669 ##| ##12: napply eqbit_to_eq12
670 ##| ##13: napply eqbit_to_eq13
671 ##| ##14: napply eqbit_to_eq14
672 ##| ##15: napply eqbit_to_eq15
673 ##| ##16: napply eqbit_to_eq16
674 ##| ##17: napply eqbit_to_eq17
675 ##| ##18: napply eqbit_to_eq18
676 ##| ##19: napply eqbit_to_eq19
677 ##| ##20: napply eqbit_to_eq20
678 ##| ##21: napply eqbit_to_eq21
679 ##| ##22: napply eqbit_to_eq22
680 ##| ##23: napply eqbit_to_eq23
681 ##| ##24: napply eqbit_to_eq24
682 ##| ##25: napply eqbit_to_eq25
683 ##| ##26: napply eqbit_to_eq26
684 ##| ##27: napply eqbit_to_eq27
685 ##| ##28: napply eqbit_to_eq28
686 ##| ##29: napply eqbit_to_eq29
687 ##| ##30: napply eqbit_to_eq30
688 ##| ##31: napply eqbit_to_eq31
689 ##| ##32: napply eqbit_to_eq32
693 nlemma eq_to_eqbit1 : ∀t2.t00 = t2 → eq_bit t00 t2 = true.
694 #t2; ncases t2; nnormalize; #H; ##[ ##1: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
697 nlemma eq_to_eqbit2 : ∀t2.t01 = t2 → eq_bit t01 t2 = true.
698 #t2; ncases t2; nnormalize; #H; ##[ ##2: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
701 nlemma eq_to_eqbit3 : ∀t2.t02 = t2 → eq_bit t02 t2 = true.
702 #t2; ncases t2; nnormalize; #H; ##[ ##3: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
705 nlemma eq_to_eqbit4 : ∀t2.t03 = t2 → eq_bit t03 t2 = true.
706 #t2; ncases t2; nnormalize; #H; ##[ ##4: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
709 nlemma eq_to_eqbit5 : ∀t2.t04 = t2 → eq_bit t04 t2 = true.
710 #t2; ncases t2; nnormalize; #H; ##[ ##5: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
713 nlemma eq_to_eqbit6 : ∀t2.t05 = t2 → eq_bit t05 t2 = true.
714 #t2; ncases t2; nnormalize; #H; ##[ ##6: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
717 nlemma eq_to_eqbit7 : ∀t2.t06 = t2 → eq_bit t06 t2 = true.
718 #t2; ncases t2; nnormalize; #H; ##[ ##7: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
721 nlemma eq_to_eqbit8 : ∀t2.t07 = t2 → eq_bit t07 t2 = true.
722 #t2; ncases t2; nnormalize; #H; ##[ ##8: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
725 nlemma eq_to_eqbit9 : ∀t2.t08 = t2 → eq_bit t08 t2 = true.
726 #t2; ncases t2; nnormalize; #H; ##[ ##9: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
729 nlemma eq_to_eqbit10 : ∀t2.t09 = t2 → eq_bit t09 t2 = true.
730 #t2; ncases t2; nnormalize; #H; ##[ ##10: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
733 nlemma eq_to_eqbit11 : ∀t2.t0A = t2 → eq_bit t0A t2 = true.
734 #t2; ncases t2; nnormalize; #H; ##[ ##11: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
737 nlemma eq_to_eqbit12 : ∀t2.t0B = t2 → eq_bit t0B t2 = true.
738 #t2; ncases t2; nnormalize; #H; ##[ ##12: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
741 nlemma eq_to_eqbit13 : ∀t2.t0C = t2 → eq_bit t0C t2 = true.
742 #t2; ncases t2; nnormalize; #H; ##[ ##13: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
745 nlemma eq_to_eqbit14 : ∀t2.t0D = t2 → eq_bit t0D t2 = true.
746 #t2; ncases t2; nnormalize; #H; ##[ ##14: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
749 nlemma eq_to_eqbit15 : ∀t2.t0E = t2 → eq_bit t0E t2 = true.
750 #t2; ncases t2; nnormalize; #H; ##[ ##15: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
753 nlemma eq_to_eqbit16 : ∀t2.t0F = t2 → eq_bit t0F t2 = true.
754 #t2; ncases t2; nnormalize; #H; ##[ ##16: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
757 nlemma eq_to_eqbit17 : ∀t2.t10 = t2 → eq_bit t10 t2 = true.
758 #t2; ncases t2; nnormalize; #H; ##[ ##17: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
761 nlemma eq_to_eqbit18 : ∀t2.t11 = t2 → eq_bit t11 t2 = true.
762 #t2; ncases t2; nnormalize; #H; ##[ ##18: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
765 nlemma eq_to_eqbit19 : ∀t2.t12 = t2 → eq_bit t12 t2 = true.
766 #t2; ncases t2; nnormalize; #H; ##[ ##19: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
769 nlemma eq_to_eqbit20 : ∀t2.t13 = t2 → eq_bit t13 t2 = true.
770 #t2; ncases t2; nnormalize; #H; ##[ ##20: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
773 nlemma eq_to_eqbit21 : ∀t2.t14 = t2 → eq_bit t14 t2 = true.
774 #t2; ncases t2; nnormalize; #H; ##[ ##21: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
777 nlemma eq_to_eqbit22 : ∀t2.t15 = t2 → eq_bit t15 t2 = true.
778 #t2; ncases t2; nnormalize; #H; ##[ ##22: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
781 nlemma eq_to_eqbit23 : ∀t2.t16 = t2 → eq_bit t16 t2 = true.
782 #t2; ncases t2; nnormalize; #H; ##[ ##23: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
785 nlemma eq_to_eqbit24 : ∀t2.t17 = t2 → eq_bit t17 t2 = true.
786 #t2; ncases t2; nnormalize; #H; ##[ ##24: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
789 nlemma eq_to_eqbit25 : ∀t2.t18 = t2 → eq_bit t18 t2 = true.
790 #t2; ncases t2; nnormalize; #H; ##[ ##25: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
793 nlemma eq_to_eqbit26 : ∀t2.t19 = t2 → eq_bit t19 t2 = true.
794 #t2; ncases t2; nnormalize; #H; ##[ ##26: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
797 nlemma eq_to_eqbit27 : ∀t2.t1A = t2 → eq_bit t1A t2 = true.
798 #t2; ncases t2; nnormalize; #H; ##[ ##27: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
801 nlemma eq_to_eqbit28 : ∀t2.t1B = t2 → eq_bit t1B t2 = true.
802 #t2; ncases t2; nnormalize; #H; ##[ ##28: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
805 nlemma eq_to_eqbit29 : ∀t2.t1C = t2 → eq_bit t1C t2 = true.
806 #t2; ncases t2; nnormalize; #H; ##[ ##29: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
809 nlemma eq_to_eqbit30 : ∀t2.t1D = t2 → eq_bit t1D t2 = true.
810 #t2; ncases t2; nnormalize; #H; ##[ ##30: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
813 nlemma eq_to_eqbit31 : ∀t2.t1E = t2 → eq_bit t1E t2 = true.
814 #t2; ncases t2; nnormalize; #H; ##[ ##31: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
817 nlemma eq_to_eqbit32 : ∀t2.t1F = t2 → eq_bit t1F t2 = true.
818 #t2; ncases t2; nnormalize; #H; ##[ ##32: napply refl_eq ##| ##*: napply (bitrigesim_destruct … H) ##]
821 nlemma eq_to_eqbit : ∀t1,t2.t1 = t2 → eq_bit t1 t2 = true.
824 ##[ ##1: napply eq_to_eqbit1
825 ##| ##2: napply eq_to_eqbit2
826 ##| ##3: napply eq_to_eqbit3
827 ##| ##4: napply eq_to_eqbit4
828 ##| ##5: napply eq_to_eqbit5
829 ##| ##6: napply eq_to_eqbit6
830 ##| ##7: napply eq_to_eqbit7
831 ##| ##8: napply eq_to_eqbit8
832 ##| ##9: napply eq_to_eqbit9
833 ##| ##10: napply eq_to_eqbit10
834 ##| ##11: napply eq_to_eqbit11
835 ##| ##12: napply eq_to_eqbit12
836 ##| ##13: napply eq_to_eqbit13
837 ##| ##14: napply eq_to_eqbit14
838 ##| ##15: napply eq_to_eqbit15
839 ##| ##16: napply eq_to_eqbit16
840 ##| ##17: napply eq_to_eqbit17
841 ##| ##18: napply eq_to_eqbit18
842 ##| ##19: napply eq_to_eqbit19
843 ##| ##20: napply eq_to_eqbit20
844 ##| ##21: napply eq_to_eqbit21
845 ##| ##22: napply eq_to_eqbit22
846 ##| ##23: napply eq_to_eqbit23
847 ##| ##24: napply eq_to_eqbit24
848 ##| ##25: napply eq_to_eqbit25
849 ##| ##26: napply eq_to_eqbit26
850 ##| ##27: napply eq_to_eqbit27
851 ##| ##28: napply eq_to_eqbit28
852 ##| ##29: napply eq_to_eqbit29
853 ##| ##30: napply eq_to_eqbit30
854 ##| ##31: napply eq_to_eqbit31
855 ##| ##32: napply eq_to_eqbit32