1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
19 (* $Id: TaylorLemma.v,v 1.8 2004/04/23 10:01:01 lcf Exp $ *)
21 include "ftc/Rolle.ma".
31 (*#* *Taylor's Theorem
33 We now prove Taylor's theorem for the remainder of the Taylor
34 series. This proof is done in two steps: first, we prove the lemma
35 for a proper compact interval; next we generalize the result to two
36 arbitrary (eventually equal) points in a proper interval.
40 We assume two different points [a] and [b] in the domain of [F] and
41 define the nth order derivative of [F] in the interval
42 [[Min(a,b),Max(a,b)]].
46 cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/a.var
50 cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/b.var
54 cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hap.var
59 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hab'.con" "Taylor_Defs__" as definition.
61 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hab.con" "Taylor_Defs__" as definition.
63 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/I.con" "Taylor_Defs__" as definition.
68 cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/F.var
72 cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Ha.var
76 cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Hb.var
81 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/fi.con" "Taylor_Defs__" as definition.
86 This last local definition is simply:
87 $f_i=f^{(i)}$#f<sub>i</sub>=f<sup>(i)</sup>#.
92 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma1.con" as lemma.
97 Now we can define the Taylor sequence around [a]. The auxiliary
98 definition gives, for any [i], the function expressed by the rule
100 (a)}{i!}*(x-a)^i.\]%#g(x)=f<sup>(i)</sup>(a)/i!*(x-a)<sup>i</sup>.#
101 We denote by [A] and [B] the elements of [[Min(a,b),Max(a,b)]]
102 corresponding to [a] and [b].
107 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/TL_compact_a.con" "Taylor_Defs__" as definition.
109 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/TL_compact_b.con" "Taylor_Defs__" as definition.
112 Notation A := (Build_subcsetoid_crr IR _ _ TL_compact_a).
116 Notation B := (Build_subcsetoid_crr IR _ _ TL_compact_b).
123 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_i.con" "Taylor_Defs__" as definition.
129 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_i'.con" "Taylor_Defs__" as definition.
131 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_a_i.con" as lemma.
133 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_b_i.con" as lemma.
135 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_x_i.con" as lemma.
137 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_a_i'.con" as lemma.
139 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_b_i'.con" as lemma.
141 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_x_i'.con" as lemma.
143 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma2.con" as lemma.
145 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma2'.con" as lemma.
147 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma3.con" as lemma.
149 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma3'.con" as lemma.
154 Adding the previous expressions up to a given bound [n] gives us the
155 Taylor sum of order [n].
158 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_seq'.con" as definition.
162 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/Taylor_seq'_aux.con" "Taylor_Defs__" as definition.
164 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_lemma_a.con" as lemma.
169 It is easy to show that [b] is in the domain of this series, which allows us to write down the Taylor remainder around [b].
172 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_lemma_b.con" as lemma.
176 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_lemma_a'.con" as lemma.
178 inline procedural "cic:/CoRN/ftc/TaylorLemma/TL_lemma_b'.con" as lemma.
182 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_rem.con" as definition.
186 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/g.con" "Taylor_Defs__" as definition.
189 Opaque Taylor_seq'_aux Taylor_rem.
193 Transparent Taylor_rem.
201 Transparent Taylor_seq' Taylor_seq'_aux.
212 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma4.con" as lemma.
215 Transparent funct_i funct_i'.
219 Opaque Taylor_seq'_aux.
223 Transparent Taylor_seq'_aux.
234 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma5.con" as lemma.
237 Transparent funct_i' FSumx.
240 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/funct_aux.con" "Taylor_Defs__" as definition.
242 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma6.con" as lemma.
245 Ltac Lazy_Included :=
248 | apply included_FPlus
249 | apply included_FInv
250 | apply included_FMinus
251 | apply included_FMult
252 | apply included_FNth
253 | apply included_refl ].
259 [ apply bin_op_wd_unfolded
260 | apply un_op_wd_unfolded
263 | apply csf_wd_unfolded ]; Algebra.
266 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma7.con" as lemma.
268 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma8.con" as lemma.
275 Transparent funct_aux.
278 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma9.con" as lemma.
280 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/g'.con" "Taylor_Defs__" as definition.
283 Opaque Taylor_rem funct_aux.
286 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma10.con" as lemma.
289 Transparent Taylor_rem funct_aux.
295 Now Taylor's theorem.
297 %\begin{convention}% Let [e] be a positive real number.
302 cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/e.var
306 cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/He.var
311 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma11.con" as lemma.
317 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_Defs/deriv_Sn'.con" "Taylor_Defs__" as definition.
323 inline procedural "cic:/CoRN/ftc/TaylorLemma/TLH.con" as lemma.
336 Transparent Taylor_rem funct_aux.
339 inline procedural "cic:/CoRN/ftc/TaylorLemma/Taylor_lemma.con" as lemma.