]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/contribs/procedural/CoRN/model/non_examples/Npos_no_group.mma
transcript: we improved the parser/lexer to read the scripts of the standard
[helm.git] / helm / software / matita / contribs / procedural / CoRN / model / non_examples / Npos_no_group.mma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 include "CoRN.ma".
18
19 (* $Id: Npos_no_group.v,v 1.6 2004/04/08 08:20:33 lcf Exp $ *)
20
21 include "algebra/CGroups.ma".
22
23 include "model/monoids/Nposmonoid.ma".
24
25 (*#* **Non-example of a group: $\langle$#⟨#[Npos],[[+]]$\rangle$#⟩#
26 There is no inverse for multiplication on the positive natural numbers.
27 *)
28
29 inline procedural "cic:/CoRN/model/non_examples/Npos_no_group/no_inverse_Nposmult.con" as lemma.
30
31 (*#* Hence the natural numbers with multiplication do not form a group.
32 *)
33
34 inline procedural "cic:/CoRN/model/non_examples/Npos_no_group/no_group_Nposmult.con" as lemma.
35