1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
19 (*#**********************************************************************)
21 (* v * The Coq Proof Assistant / The Coq Development Team *)
23 (* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
25 (* \VV/ *************************************************************)
27 (* // * This file is distributed under the terms of the *)
29 (* * GNU Lesser General Public License Version 2.1 *)
31 (*#**********************************************************************)
33 (*i $Id: RIneq.v,v 1.23 2003/12/15 19:48:20 barras Exp $ i*)
35 (*#**************************************************************************)
37 (*#* Basic lemmas for the classical reals numbers *)
39 (*#**************************************************************************)
41 include "Reals/Raxioms.ma".
44 Open Local Scope Z_scope.
48 Open Local Scope R_scope.
55 (*#**************************************************************************)
57 (*#* Instantiating Ring tactic on reals *)
59 (*#**************************************************************************)
61 inline procedural "cic:/Coq/Reals/RIneq/RTheory.con" as lemma.
64 Add Field R Rplus Rmult 1 0 Ropp (fun x y:R => false) Rinv RTheory Rinv_l
65 with minus := Rminus div := Rdiv.
68 (*#*************************************************************************)
70 (*#* Relation between orders and equality *)
72 (*#*************************************************************************)
76 inline procedural "cic:/Coq/Reals/RIneq/Rlt_irrefl.con" as lemma.
79 Hint Resolve Rlt_irrefl: real.
82 inline procedural "cic:/Coq/Reals/RIneq/Rle_refl.con" as lemma.
84 inline procedural "cic:/Coq/Reals/RIneq/Rlt_not_eq.con" as lemma.
86 inline procedural "cic:/Coq/Reals/RIneq/Rgt_not_eq.con" as lemma.
90 inline procedural "cic:/Coq/Reals/RIneq/Rlt_dichotomy_converse.con" as lemma.
93 Hint Resolve Rlt_dichotomy_converse: real.
96 (*#* Reasoning by case on equalities and order *)
100 inline procedural "cic:/Coq/Reals/RIneq/Req_dec.con" as lemma.
103 Hint Resolve Req_dec: real.
108 inline procedural "cic:/Coq/Reals/RIneq/Rtotal_order.con" as lemma.
112 inline procedural "cic:/Coq/Reals/RIneq/Rdichotomy.con" as lemma.
114 (*#********************************************************************************)
116 (*#* Order Lemma : relating [<], [>], [<=] and [>=] *)
118 (*#********************************************************************************)
122 inline procedural "cic:/Coq/Reals/RIneq/Rlt_le.con" as lemma.
125 Hint Resolve Rlt_le: real.
130 inline procedural "cic:/Coq/Reals/RIneq/Rle_ge.con" as lemma.
133 Hint Immediate Rle_ge: real.
138 inline procedural "cic:/Coq/Reals/RIneq/Rge_le.con" as lemma.
141 Hint Resolve Rge_le: real.
146 inline procedural "cic:/Coq/Reals/RIneq/Rnot_le_lt.con" as lemma.
149 Hint Immediate Rnot_le_lt: real.
152 inline procedural "cic:/Coq/Reals/RIneq/Rnot_ge_lt.con" as lemma.
156 inline procedural "cic:/Coq/Reals/RIneq/Rlt_not_le.con" as lemma.
158 inline procedural "cic:/Coq/Reals/RIneq/Rgt_not_le.con" as lemma.
161 Hint Immediate Rlt_not_le: real.
164 inline procedural "cic:/Coq/Reals/RIneq/Rle_not_lt.con" as lemma.
168 inline procedural "cic:/Coq/Reals/RIneq/Rlt_not_ge.con" as lemma.
171 Hint Immediate Rlt_not_ge: real.
176 inline procedural "cic:/Coq/Reals/RIneq/Req_le.con" as lemma.
179 Hint Immediate Req_le: real.
182 inline procedural "cic:/Coq/Reals/RIneq/Req_ge.con" as lemma.
185 Hint Immediate Req_ge: real.
188 inline procedural "cic:/Coq/Reals/RIneq/Req_le_sym.con" as lemma.
191 Hint Immediate Req_le_sym: real.
194 inline procedural "cic:/Coq/Reals/RIneq/Req_ge_sym.con" as lemma.
197 Hint Immediate Req_ge_sym: real.
200 inline procedural "cic:/Coq/Reals/RIneq/Rle_antisym.con" as lemma.
203 Hint Resolve Rle_antisym: real.
208 inline procedural "cic:/Coq/Reals/RIneq/Rle_le_eq.con" as lemma.
210 inline procedural "cic:/Coq/Reals/RIneq/Rlt_eq_compat.con" as lemma.
214 inline procedural "cic:/Coq/Reals/RIneq/Rle_trans.con" as lemma.
218 inline procedural "cic:/Coq/Reals/RIneq/Rle_lt_trans.con" as lemma.
222 inline procedural "cic:/Coq/Reals/RIneq/Rlt_le_trans.con" as lemma.
224 (*#* Decidability of the order *)
226 inline procedural "cic:/Coq/Reals/RIneq/Rlt_dec.con" as lemma.
230 inline procedural "cic:/Coq/Reals/RIneq/Rle_dec.con" as lemma.
234 inline procedural "cic:/Coq/Reals/RIneq/Rgt_dec.con" as lemma.
238 inline procedural "cic:/Coq/Reals/RIneq/Rge_dec.con" as lemma.
240 inline procedural "cic:/Coq/Reals/RIneq/Rlt_le_dec.con" as lemma.
242 inline procedural "cic:/Coq/Reals/RIneq/Rle_or_lt.con" as lemma.
244 inline procedural "cic:/Coq/Reals/RIneq/Rle_lt_or_eq_dec.con" as lemma.
248 inline procedural "cic:/Coq/Reals/RIneq/inser_trans_R.con" as lemma.
250 (*#***************************************************************)
254 (* This part contains lemma involving the Fields operations *)
256 (*#***************************************************************)
258 (*#********************************************************)
262 (*#********************************************************)
264 inline procedural "cic:/Coq/Reals/RIneq/Rplus_ne.con" as lemma.
267 Hint Resolve Rplus_ne: real v62.
270 inline procedural "cic:/Coq/Reals/RIneq/Rplus_0_r.con" as lemma.
273 Hint Resolve Rplus_0_r: real.
278 inline procedural "cic:/Coq/Reals/RIneq/Rplus_opp_l.con" as lemma.
281 Hint Resolve Rplus_opp_l: real.
286 inline procedural "cic:/Coq/Reals/RIneq/Rplus_opp_r_uniq.con" as lemma.
291 Hint Resolve (f_equal (A:=R)): real.
294 inline procedural "cic:/Coq/Reals/RIneq/Rplus_eq_compat_l.con" as lemma.
299 Hint Resolve Rplus_eq_compat_l: v62.
304 inline procedural "cic:/Coq/Reals/RIneq/Rplus_eq_reg_l.con" as lemma.
307 Hint Resolve Rplus_eq_reg_l: real.
312 inline procedural "cic:/Coq/Reals/RIneq/Rplus_0_r_uniq.con" as lemma.
314 (*#**********************************************************)
316 (*#* Multiplication *)
318 (*#**********************************************************)
322 inline procedural "cic:/Coq/Reals/RIneq/Rinv_r.con" as lemma.
325 Hint Resolve Rinv_r: real.
328 inline procedural "cic:/Coq/Reals/RIneq/Rinv_l_sym.con" as lemma.
330 inline procedural "cic:/Coq/Reals/RIneq/Rinv_r_sym.con" as lemma.
333 Hint Resolve Rinv_l_sym Rinv_r_sym: real.
338 inline procedural "cic:/Coq/Reals/RIneq/Rmult_0_r.con" as lemma.
341 Hint Resolve Rmult_0_r: real v62.
346 inline procedural "cic:/Coq/Reals/RIneq/Rmult_0_l.con" as lemma.
349 Hint Resolve Rmult_0_l: real v62.
354 inline procedural "cic:/Coq/Reals/RIneq/Rmult_ne.con" as lemma.
357 Hint Resolve Rmult_ne: real v62.
362 inline procedural "cic:/Coq/Reals/RIneq/Rmult_1_r.con" as lemma.
365 Hint Resolve Rmult_1_r: real.
370 inline procedural "cic:/Coq/Reals/RIneq/Rmult_eq_compat_l.con" as lemma.
375 Hint Resolve Rmult_eq_compat_l: v62.
380 inline procedural "cic:/Coq/Reals/RIneq/Rmult_eq_reg_l.con" as lemma.
384 inline procedural "cic:/Coq/Reals/RIneq/Rmult_integral.con" as lemma.
388 inline procedural "cic:/Coq/Reals/RIneq/Rmult_eq_0_compat.con" as lemma.
391 Hint Resolve Rmult_eq_0_compat: real.
396 inline procedural "cic:/Coq/Reals/RIneq/Rmult_eq_0_compat_r.con" as lemma.
400 inline procedural "cic:/Coq/Reals/RIneq/Rmult_eq_0_compat_l.con" as lemma.
404 inline procedural "cic:/Coq/Reals/RIneq/Rmult_neq_0_reg.con" as lemma.
408 inline procedural "cic:/Coq/Reals/RIneq/Rmult_integral_contrapositive.con" as lemma.
411 Hint Resolve Rmult_integral_contrapositive: real.
416 inline procedural "cic:/Coq/Reals/RIneq/Rmult_plus_distr_r.con" as lemma.
418 (*#* Square function *)
422 inline procedural "cic:/Coq/Reals/RIneq/Rsqr.con" as definition.
426 inline procedural "cic:/Coq/Reals/RIneq/Rsqr_0.con" as lemma.
430 inline procedural "cic:/Coq/Reals/RIneq/Rsqr_0_uniq.con" as lemma.
432 (*#********************************************************)
436 (*#********************************************************)
440 inline procedural "cic:/Coq/Reals/RIneq/Ropp_eq_compat.con" as lemma.
443 Hint Resolve Ropp_eq_compat: real.
448 inline procedural "cic:/Coq/Reals/RIneq/Ropp_0.con" as lemma.
451 Hint Resolve Ropp_0: real v62.
456 inline procedural "cic:/Coq/Reals/RIneq/Ropp_eq_0_compat.con" as lemma.
459 Hint Resolve Ropp_eq_0_compat: real.
464 inline procedural "cic:/Coq/Reals/RIneq/Ropp_involutive.con" as lemma.
467 Hint Resolve Ropp_involutive: real.
472 inline procedural "cic:/Coq/Reals/RIneq/Ropp_neq_0_compat.con" as lemma.
475 Hint Resolve Ropp_neq_0_compat: real.
480 inline procedural "cic:/Coq/Reals/RIneq/Ropp_plus_distr.con" as lemma.
483 Hint Resolve Ropp_plus_distr: real.
486 (*#* Opposite and multiplication *)
488 inline procedural "cic:/Coq/Reals/RIneq/Ropp_mult_distr_l_reverse.con" as lemma.
491 Hint Resolve Ropp_mult_distr_l_reverse: real.
496 inline procedural "cic:/Coq/Reals/RIneq/Rmult_opp_opp.con" as lemma.
499 Hint Resolve Rmult_opp_opp: real.
502 inline procedural "cic:/Coq/Reals/RIneq/Ropp_mult_distr_r_reverse.con" as lemma.
506 inline procedural "cic:/Coq/Reals/RIneq/Rminus_0_r.con" as lemma.
509 Hint Resolve Rminus_0_r: real.
512 inline procedural "cic:/Coq/Reals/RIneq/Rminus_0_l.con" as lemma.
515 Hint Resolve Rminus_0_l: real.
520 inline procedural "cic:/Coq/Reals/RIneq/Ropp_minus_distr.con" as lemma.
523 Hint Resolve Ropp_minus_distr: real.
526 inline procedural "cic:/Coq/Reals/RIneq/Ropp_minus_distr'.con" as lemma.
529 Hint Resolve Ropp_minus_distr': real.
534 inline procedural "cic:/Coq/Reals/RIneq/Rminus_diag_eq.con" as lemma.
537 Hint Resolve Rminus_diag_eq: real.
542 inline procedural "cic:/Coq/Reals/RIneq/Rminus_diag_uniq.con" as lemma.
545 Hint Immediate Rminus_diag_uniq: real.
548 inline procedural "cic:/Coq/Reals/RIneq/Rminus_diag_uniq_sym.con" as lemma.
551 Hint Immediate Rminus_diag_uniq_sym: real.
554 inline procedural "cic:/Coq/Reals/RIneq/Rplus_minus.con" as lemma.
557 Hint Resolve Rplus_minus: real.
562 inline procedural "cic:/Coq/Reals/RIneq/Rminus_eq_contra.con" as lemma.
565 Hint Resolve Rminus_eq_contra: real.
568 inline procedural "cic:/Coq/Reals/RIneq/Rminus_not_eq.con" as lemma.
571 Hint Resolve Rminus_not_eq: real.
574 inline procedural "cic:/Coq/Reals/RIneq/Rminus_not_eq_right.con" as lemma.
577 Hint Resolve Rminus_not_eq_right: real.
582 inline procedural "cic:/Coq/Reals/RIneq/Rmult_minus_distr_l.con" as lemma.
586 inline procedural "cic:/Coq/Reals/RIneq/Rinv_1.con" as lemma.
589 Hint Resolve Rinv_1: real.
594 inline procedural "cic:/Coq/Reals/RIneq/Rinv_neq_0_compat.con" as lemma.
597 Hint Resolve Rinv_neq_0_compat: real.
602 inline procedural "cic:/Coq/Reals/RIneq/Rinv_involutive.con" as lemma.
605 Hint Resolve Rinv_involutive: real.
610 inline procedural "cic:/Coq/Reals/RIneq/Rinv_mult_distr.con" as lemma.
614 inline procedural "cic:/Coq/Reals/RIneq/Ropp_inv_permute.con" as lemma.
616 inline procedural "cic:/Coq/Reals/RIneq/Rinv_r_simpl_r.con" as lemma.
618 inline procedural "cic:/Coq/Reals/RIneq/Rinv_r_simpl_l.con" as lemma.
620 inline procedural "cic:/Coq/Reals/RIneq/Rinv_r_simpl_m.con" as lemma.
623 Hint Resolve Rinv_r_simpl_l Rinv_r_simpl_r Rinv_r_simpl_m: real.
628 inline procedural "cic:/Coq/Reals/RIneq/Rinv_mult_simpl.con" as lemma.
630 (*#* Order and addition *)
632 inline procedural "cic:/Coq/Reals/RIneq/Rplus_lt_compat_r.con" as lemma.
635 Hint Resolve Rplus_lt_compat_r: real.
640 inline procedural "cic:/Coq/Reals/RIneq/Rplus_lt_reg_r.con" as lemma.
644 inline procedural "cic:/Coq/Reals/RIneq/Rplus_le_compat_l.con" as lemma.
648 inline procedural "cic:/Coq/Reals/RIneq/Rplus_le_compat_r.con" as lemma.
651 Hint Resolve Rplus_le_compat_l Rplus_le_compat_r: real.
656 inline procedural "cic:/Coq/Reals/RIneq/Rplus_le_reg_l.con" as lemma.
660 inline procedural "cic:/Coq/Reals/RIneq/sum_inequa_Rle_lt.con" as lemma.
664 inline procedural "cic:/Coq/Reals/RIneq/Rplus_lt_compat.con" as lemma.
666 inline procedural "cic:/Coq/Reals/RIneq/Rplus_le_compat.con" as lemma.
670 inline procedural "cic:/Coq/Reals/RIneq/Rplus_lt_le_compat.con" as lemma.
674 inline procedural "cic:/Coq/Reals/RIneq/Rplus_le_lt_compat.con" as lemma.
677 Hint Immediate Rplus_lt_compat Rplus_le_compat Rplus_lt_le_compat
678 Rplus_le_lt_compat: real.
681 (*#* Order and Opposite *)
685 inline procedural "cic:/Coq/Reals/RIneq/Ropp_gt_lt_contravar.con" as lemma.
688 Hint Resolve Ropp_gt_lt_contravar.
693 inline procedural "cic:/Coq/Reals/RIneq/Ropp_lt_gt_contravar.con" as lemma.
696 Hint Resolve Ropp_lt_gt_contravar: real.
699 inline procedural "cic:/Coq/Reals/RIneq/Ropp_lt_cancel.con" as lemma.
702 Hint Immediate Ropp_lt_cancel: real.
705 inline procedural "cic:/Coq/Reals/RIneq/Ropp_lt_contravar.con" as lemma.
708 Hint Resolve Ropp_lt_contravar: real.
713 inline procedural "cic:/Coq/Reals/RIneq/Ropp_le_ge_contravar.con" as lemma.
716 Hint Resolve Ropp_le_ge_contravar: real.
719 inline procedural "cic:/Coq/Reals/RIneq/Ropp_le_cancel.con" as lemma.
722 Hint Immediate Ropp_le_cancel: real.
725 inline procedural "cic:/Coq/Reals/RIneq/Ropp_le_contravar.con" as lemma.
728 Hint Resolve Ropp_le_contravar: real.
733 inline procedural "cic:/Coq/Reals/RIneq/Ropp_ge_le_contravar.con" as lemma.
736 Hint Resolve Ropp_ge_le_contravar: real.
741 inline procedural "cic:/Coq/Reals/RIneq/Ropp_0_lt_gt_contravar.con" as lemma.
744 Hint Resolve Ropp_0_lt_gt_contravar: real.
749 inline procedural "cic:/Coq/Reals/RIneq/Ropp_0_gt_lt_contravar.con" as lemma.
752 Hint Resolve Ropp_0_gt_lt_contravar: real.
757 inline procedural "cic:/Coq/Reals/RIneq/Ropp_lt_gt_0_contravar.con" as lemma.
761 inline procedural "cic:/Coq/Reals/RIneq/Ropp_gt_lt_0_contravar.con" as lemma.
764 Hint Resolve Ropp_lt_gt_0_contravar Ropp_gt_lt_0_contravar: real.
769 inline procedural "cic:/Coq/Reals/RIneq/Ropp_0_le_ge_contravar.con" as lemma.
772 Hint Resolve Ropp_0_le_ge_contravar: real.
777 inline procedural "cic:/Coq/Reals/RIneq/Ropp_0_ge_le_contravar.con" as lemma.
780 Hint Resolve Ropp_0_ge_le_contravar: real.
783 (*#* Order and multiplication *)
785 inline procedural "cic:/Coq/Reals/RIneq/Rmult_lt_compat_r.con" as lemma.
788 Hint Resolve Rmult_lt_compat_r.
791 inline procedural "cic:/Coq/Reals/RIneq/Rmult_lt_reg_l.con" as lemma.
793 inline procedural "cic:/Coq/Reals/RIneq/Rmult_lt_gt_compat_neg_l.con" as lemma.
797 inline procedural "cic:/Coq/Reals/RIneq/Rmult_le_compat_l.con" as lemma.
800 Hint Resolve Rmult_le_compat_l: real.
803 inline procedural "cic:/Coq/Reals/RIneq/Rmult_le_compat_r.con" as lemma.
806 Hint Resolve Rmult_le_compat_r: real.
809 inline procedural "cic:/Coq/Reals/RIneq/Rmult_le_reg_l.con" as lemma.
811 inline procedural "cic:/Coq/Reals/RIneq/Rmult_le_compat_neg_l.con" as lemma.
814 Hint Resolve Rmult_le_compat_neg_l: real.
817 inline procedural "cic:/Coq/Reals/RIneq/Rmult_le_ge_compat_neg_l.con" as lemma.
820 Hint Resolve Rmult_le_ge_compat_neg_l: real.
823 inline procedural "cic:/Coq/Reals/RIneq/Rmult_le_compat.con" as lemma.
826 Hint Resolve Rmult_le_compat: real.
829 inline procedural "cic:/Coq/Reals/RIneq/Rmult_gt_0_lt_compat.con" as lemma.
833 inline procedural "cic:/Coq/Reals/RIneq/Rmult_ge_0_gt_0_lt_compat.con" as lemma.
835 (*#* Order and Substractions *)
837 inline procedural "cic:/Coq/Reals/RIneq/Rlt_minus.con" as lemma.
840 Hint Resolve Rlt_minus: real.
845 inline procedural "cic:/Coq/Reals/RIneq/Rle_minus.con" as lemma.
849 inline procedural "cic:/Coq/Reals/RIneq/Rminus_lt.con" as lemma.
853 inline procedural "cic:/Coq/Reals/RIneq/Rminus_le.con" as lemma.
857 inline procedural "cic:/Coq/Reals/RIneq/tech_Rplus.con" as lemma.
860 Hint Immediate tech_Rplus: real.
863 (*#* Order and the square function *)
865 inline procedural "cic:/Coq/Reals/RIneq/Rle_0_sqr.con" as lemma.
869 inline procedural "cic:/Coq/Reals/RIneq/Rlt_0_sqr.con" as lemma.
872 Hint Resolve Rle_0_sqr Rlt_0_sqr: real.
875 (*#* Zero is less than one *)
877 inline procedural "cic:/Coq/Reals/RIneq/Rlt_0_1.con" as lemma.
880 Hint Resolve Rlt_0_1: real.
883 inline procedural "cic:/Coq/Reals/RIneq/Rle_0_1.con" as lemma.
885 (*#* Order and inverse *)
887 inline procedural "cic:/Coq/Reals/RIneq/Rinv_0_lt_compat.con" as lemma.
890 Hint Resolve Rinv_0_lt_compat: real.
895 inline procedural "cic:/Coq/Reals/RIneq/Rinv_lt_0_compat.con" as lemma.
898 Hint Resolve Rinv_lt_0_compat: real.
903 inline procedural "cic:/Coq/Reals/RIneq/Rinv_lt_contravar.con" as lemma.
905 inline procedural "cic:/Coq/Reals/RIneq/Rinv_1_lt_contravar.con" as lemma.
908 Hint Resolve Rinv_1_lt_contravar: real.
911 (*#********************************************************)
915 (*#********************************************************)
919 inline procedural "cic:/Coq/Reals/RIneq/Rge_antisym.con" as lemma.
923 inline procedural "cic:/Coq/Reals/RIneq/Rnot_lt_ge.con" as lemma.
927 inline procedural "cic:/Coq/Reals/RIneq/Rnot_lt_le.con" as lemma.
931 inline procedural "cic:/Coq/Reals/RIneq/Rnot_gt_le.con" as lemma.
935 inline procedural "cic:/Coq/Reals/RIneq/Rgt_ge.con" as lemma.
939 inline procedural "cic:/Coq/Reals/RIneq/Rge_gt_trans.con" as lemma.
943 inline procedural "cic:/Coq/Reals/RIneq/Rgt_ge_trans.con" as lemma.
947 inline procedural "cic:/Coq/Reals/RIneq/Rgt_trans.con" as lemma.
951 inline procedural "cic:/Coq/Reals/RIneq/Rge_trans.con" as lemma.
955 inline procedural "cic:/Coq/Reals/RIneq/Rle_lt_0_plus_1.con" as lemma.
958 Hint Resolve Rle_lt_0_plus_1: real.
963 inline procedural "cic:/Coq/Reals/RIneq/Rlt_plus_1.con" as lemma.
966 Hint Resolve Rlt_plus_1: real.
971 inline procedural "cic:/Coq/Reals/RIneq/tech_Rgt_minus.con" as lemma.
975 inline procedural "cic:/Coq/Reals/RIneq/Rplus_gt_compat_l.con" as lemma.
978 Hint Resolve Rplus_gt_compat_l: real.
983 inline procedural "cic:/Coq/Reals/RIneq/Rplus_gt_reg_l.con" as lemma.
987 inline procedural "cic:/Coq/Reals/RIneq/Rplus_ge_compat_l.con" as lemma.
990 Hint Resolve Rplus_ge_compat_l: real.
995 inline procedural "cic:/Coq/Reals/RIneq/Rplus_ge_reg_l.con" as lemma.
999 inline procedural "cic:/Coq/Reals/RIneq/Rmult_ge_compat_r.con" as lemma.
1003 inline procedural "cic:/Coq/Reals/RIneq/Rgt_minus.con" as lemma.
1007 inline procedural "cic:/Coq/Reals/RIneq/minus_Rgt.con" as lemma.
1011 inline procedural "cic:/Coq/Reals/RIneq/Rge_minus.con" as lemma.
1015 inline procedural "cic:/Coq/Reals/RIneq/minus_Rge.con" as lemma.
1019 inline procedural "cic:/Coq/Reals/RIneq/Rmult_gt_0_compat.con" as lemma.
1023 inline procedural "cic:/Coq/Reals/RIneq/Rmult_lt_0_compat.con" as lemma.
1027 inline procedural "cic:/Coq/Reals/RIneq/Rplus_eq_0_l.con" as lemma.
1029 inline procedural "cic:/Coq/Reals/RIneq/Rplus_eq_R0.con" as lemma.
1033 inline procedural "cic:/Coq/Reals/RIneq/Rplus_sqr_eq_0_l.con" as lemma.
1035 inline procedural "cic:/Coq/Reals/RIneq/Rplus_sqr_eq_0.con" as lemma.
1037 (*#*********************************************************)
1039 (*#* Injection from [N] to [R] *)
1041 (*#*********************************************************)
1045 inline procedural "cic:/Coq/Reals/RIneq/S_INR.con" as lemma.
1049 inline procedural "cic:/Coq/Reals/RIneq/S_O_plus_INR.con" as lemma.
1053 inline procedural "cic:/Coq/Reals/RIneq/plus_INR.con" as lemma.
1057 inline procedural "cic:/Coq/Reals/RIneq/minus_INR.con" as lemma.
1061 inline procedural "cic:/Coq/Reals/RIneq/mult_INR.con" as lemma.
1064 Hint Resolve plus_INR minus_INR mult_INR: real.
1069 inline procedural "cic:/Coq/Reals/RIneq/lt_INR_0.con" as lemma.
1072 Hint Resolve lt_INR_0: real.
1075 inline procedural "cic:/Coq/Reals/RIneq/lt_INR.con" as lemma.
1078 Hint Resolve lt_INR: real.
1081 inline procedural "cic:/Coq/Reals/RIneq/INR_lt_1.con" as lemma.
1084 Hint Resolve INR_lt_1: real.
1089 inline procedural "cic:/Coq/Reals/RIneq/INR_pos.con" as lemma.
1092 Hint Resolve INR_pos: real.
1097 inline procedural "cic:/Coq/Reals/RIneq/pos_INR.con" as lemma.
1100 Hint Resolve pos_INR: real.
1103 inline procedural "cic:/Coq/Reals/RIneq/INR_lt.con" as lemma.
1106 Hint Resolve INR_lt: real.
1111 inline procedural "cic:/Coq/Reals/RIneq/le_INR.con" as lemma.
1114 Hint Resolve le_INR: real.
1119 inline procedural "cic:/Coq/Reals/RIneq/not_INR_O.con" as lemma.
1122 Hint Immediate not_INR_O: real.
1127 inline procedural "cic:/Coq/Reals/RIneq/not_O_INR.con" as lemma.
1130 Hint Resolve not_O_INR: real.
1133 inline procedural "cic:/Coq/Reals/RIneq/not_nm_INR.con" as lemma.
1136 Hint Resolve not_nm_INR: real.
1139 inline procedural "cic:/Coq/Reals/RIneq/INR_eq.con" as lemma.
1142 Hint Resolve INR_eq: real.
1145 inline procedural "cic:/Coq/Reals/RIneq/INR_le.con" as lemma.
1148 Hint Resolve INR_le: real.
1151 inline procedural "cic:/Coq/Reals/RIneq/not_1_INR.con" as lemma.
1154 Hint Resolve not_1_INR: real.
1157 (*#*********************************************************)
1159 (*#* Injection from [Z] to [R] *)
1161 (*#*********************************************************)
1165 inline procedural "cic:/Coq/Reals/RIneq/IZN.con" as lemma.
1169 inline procedural "cic:/Coq/Reals/RIneq/INR_IZR_INZ.con" as lemma.
1171 inline procedural "cic:/Coq/Reals/RIneq/plus_IZR_NEG_POS.con" as lemma.
1175 inline procedural "cic:/Coq/Reals/RIneq/plus_IZR.con" as lemma.
1179 inline procedural "cic:/Coq/Reals/RIneq/mult_IZR.con" as lemma.
1183 inline procedural "cic:/Coq/Reals/RIneq/Ropp_Ropp_IZR.con" as lemma.
1187 inline procedural "cic:/Coq/Reals/RIneq/Z_R_minus.con" as lemma.
1191 inline procedural "cic:/Coq/Reals/RIneq/lt_O_IZR.con" as lemma.
1195 inline procedural "cic:/Coq/Reals/RIneq/lt_IZR.con" as lemma.
1199 inline procedural "cic:/Coq/Reals/RIneq/eq_IZR_R0.con" as lemma.
1203 inline procedural "cic:/Coq/Reals/RIneq/eq_IZR.con" as lemma.
1207 inline procedural "cic:/Coq/Reals/RIneq/not_O_IZR.con" as lemma.
1211 inline procedural "cic:/Coq/Reals/RIneq/le_O_IZR.con" as lemma.
1215 inline procedural "cic:/Coq/Reals/RIneq/le_IZR.con" as lemma.
1219 inline procedural "cic:/Coq/Reals/RIneq/le_IZR_R1.con" as lemma.
1223 inline procedural "cic:/Coq/Reals/RIneq/IZR_ge.con" as lemma.
1225 inline procedural "cic:/Coq/Reals/RIneq/IZR_le.con" as lemma.
1227 inline procedural "cic:/Coq/Reals/RIneq/IZR_lt.con" as lemma.
1229 inline procedural "cic:/Coq/Reals/RIneq/one_IZR_lt1.con" as lemma.
1231 inline procedural "cic:/Coq/Reals/RIneq/one_IZR_r_R1.con" as lemma.
1235 inline procedural "cic:/Coq/Reals/RIneq/single_z_r_R1.con" as lemma.
1239 inline procedural "cic:/Coq/Reals/RIneq/tech_single_z_r_R1.con" as lemma.
1241 (*#****************************************************************)
1243 (*#* Definitions of new types *)
1245 (*#****************************************************************)
1247 inline procedural "cic:/Coq/Reals/RIneq/nonnegreal.ind".
1249 inline procedural "cic:/Coq/Reals/RIneq/posreal.ind".
1251 inline procedural "cic:/Coq/Reals/RIneq/nonposreal.ind".
1253 inline procedural "cic:/Coq/Reals/RIneq/negreal.ind".
1255 inline procedural "cic:/Coq/Reals/RIneq/nonzeroreal.ind".
1259 inline procedural "cic:/Coq/Reals/RIneq/prod_neq_R0.con" as lemma.
1263 inline procedural "cic:/Coq/Reals/RIneq/Rmult_le_pos.con" as lemma.
1265 inline procedural "cic:/Coq/Reals/RIneq/double.con" as lemma.
1267 inline procedural "cic:/Coq/Reals/RIneq/double_var.con" as lemma.
1269 (*#*********************************************************)
1271 (*#* Other rules about < and <= *)
1273 (*#*********************************************************)
1275 inline procedural "cic:/Coq/Reals/RIneq/Rplus_lt_0_compat.con" as lemma.
1277 inline procedural "cic:/Coq/Reals/RIneq/Rplus_le_lt_0_compat.con" as lemma.
1279 inline procedural "cic:/Coq/Reals/RIneq/Rplus_lt_le_0_compat.con" as lemma.
1281 inline procedural "cic:/Coq/Reals/RIneq/Rplus_le_le_0_compat.con" as lemma.
1283 inline procedural "cic:/Coq/Reals/RIneq/plus_le_is_le.con" as lemma.
1285 inline procedural "cic:/Coq/Reals/RIneq/plus_lt_is_lt.con" as lemma.
1287 inline procedural "cic:/Coq/Reals/RIneq/Rmult_le_0_lt_compat.con" as lemma.
1289 inline procedural "cic:/Coq/Reals/RIneq/le_epsilon.con" as lemma.
1293 inline procedural "cic:/Coq/Reals/RIneq/completeness_weak.con" as lemma.