1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/constructive_higher_order_relations".
17 include "constructive_connectives.ma".
19 definition cotransitive ≝
20 λC:Type.λlt:C→C→Type.∀x,y,z:C. lt x y → lt x z ∨ lt z y.
22 definition coreflexive ≝ λC:Type.λlt:C→C→Type. ∀x:C. ¬ (lt x x).
24 definition antisymmetric ≝
25 λC:Type.λle:C→C→Type.λeq:C→C→Type.∀x,y:C.le x y → le y x → eq x y.
27 definition symmetric ≝
28 λC:Type.λle:C→C→Type.∀x,y:C.le x y → le y x.
30 definition transitive ≝
31 λC:Type.λle:C→C→Type.∀x,y,z:C.le x y → le y z → le x z.
33 definition associative ≝
34 λC:Type.λop:C→C→C.λeq:C→C→Type.∀x,y,z. eq (op x (op y z)) (op (op x y) z).
36 definition commutative ≝
37 λC:Type.λop:C→C→C.λeq:C→C→Type.∀x,y. eq (op x y) (op y x).