1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/lebesgue/".
18 include "lattices.ma".
20 record measured_set (R : real) : Type ≝ {
22 ms_measure: ms_carr → ms_carr → R
25 notation "\delta" non associative with precedence 90 for @{ 'delta }.
26 interpretation "measure" 'delta = (cic:/matita/lebesgue/ms_measure.con _ _).
28 record pre_measured_lattice (R : real) : Type ≝ {
29 ml_lattice :> lattice;
30 ml_measured_set_ : measured_set R;
31 with_ml_lattice_eq_ml_measured_set_: ms_carr ? ml_measured_set_ = ml_lattice
34 lemma ml_measured_set : ∀R.∀ms:pre_measured_lattice R. measured_set R.
35 intros (R ml); constructor 1; [1:apply (ml : Type);] cases ml;
36 rewrite < H; clear H; cases ml_measured_set_; simplify; exact f;
39 coercion cic:/matita/lebesgue/ml_measured_set.con.
41 record is_measured_lattice (R : real) (ml : pre_measured_lattice R) : Prop ≝ {
42 prop1a: ∀a : ml.δ (a ∧ a) a = 0;
43 prop1b: ∀a : ml.δ (a ∨ a) a = 0;
44 prop2a: ∀a,b: ml. δ (a ∨ b) (b ∨ a) = 0;
45 prop2b: ∀a,b: ml. δ (a ∧ b) (b ∧ a) = 0;
46 prop3a: ∀a,b,c: ml. δ (a ∨ (b ∨ c)) ((a ∨ b) ∨ c) = 0;
47 prop3b: ∀a,b,c: ml. δ (a ∧ (b ∧ c)) ((a ∧ b) ∧ c) = 0;
48 prop4a: ∀a,b: ml. δ (a ∨ (a ∧ b)) a = 0;
49 prop4b: ∀a,b: ml. δ (a ∧ (a ∨ b)) a = 0;
50 prop5: ∀a,b,c: ml. δ (a ∨ b) (a ∨ c) + δ (a ∧ b) (a ∧ c) ≤ δ b c
53 record measured_lattice (R : real) : Type ≝ {
54 ml_pre_measured_lattice:> pre_measured_lattice R;
55 ml_measured_lattice_properties: is_measured_lattice R ml_pre_measured_lattice
59 λR: real. λml: measured_lattice R. λa,b: ml. 0 < δ a b.
60 (* < scazzato, ma CSC dice che poi si cambia dopo *)
62 notation "a # b" non associative with precedence 50 for
64 interpretation "measured lattice apartness" 'apart a b =
65 (cic:/matita/lebesgue/apart.con _ _ a b).
66 notation "a \approx b" non associative with precedence 50 for
68 interpretation "measured lattice non apartness" 'napart a b =
69 (cic:/matita/logic/connectives/Not.con
70 (cic:/matita/lebesgue/apart.con _ _ a b)).
72 lemma foo : ∀R: real. ∀ml: measured_lattice R.∀a,b,a1,b1: ml.
73 a ≈ a1 → b ≈ b1 → δ a b = δ a1 b1.