1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/didactic/ex_seq".
17 include "sequences.ma".
20 ESERCIZI SULLE SUCCESSIONI
22 Dimostrare che la successione alpha converge a 0
25 definition F ≝ λ x:R.Rdiv x (S (S O)).
27 definition alpha ≝ successione F R1.
29 axiom cont: continuo F.
31 lemma l1: monotone_not_increasing alpha.
32 we need to prove (monotone_not_increasing alpha)
33 or equivalently (∀n:nat. alpha (S n) ≤ alpha n).
35 we need to prove (alpha (S n) ≤ alpha n)
36 or equivalently (Rdiv (alpha n) (S (S O)) ≤ alpha n).
40 lemma l2: inf_bounded alpha.
41 we need to prove (inf_bounded alpha)
42 or equivalently (∃m. ∀n:nat. m ≤ alpha n).
43 (* da trovare il modo giusto *)
44 cut (∀n:nat.R0 ≤ alpha n).by (ex_intro ? ? R0 Hcut) done.
46 we need to prove (∀n:nat. R0 ≤ alpha n).
48 we proceed by induction on n to prove (R0 ≤ alpha n).
51 the thesis becomes (R0 ≤ alpha O)
52 or equivalently (R0 ≤ R1).
54 (* approssimiamo con questo *)
55 we need to prove (R0 ≤ alpha O)
56 or equivalently (R0 ≤ R1).
59 by induction hypothesis we know (R0 ≤ alpha m) (H).
60 we need to prove (R0 ≤ alpha (S m))
61 or equivalently (R0 ≤ Rdiv (alpha m) (S (S O))).
66 ∀ F: R → R. ∀b:R. continuo F →
67 ∀ l. tends_to (successione F b) l →
70 theorem dimostrazione: tends_to alpha O.
71 by _ let l:R such that (tends_to alpha l) (H).
73 change in match alpha in H with (successione F O).
74 check(xxx' F cont l H).*)
75 by (lim_punto_fisso F R1 cont l H) we proved (punto_fisso F l) (H2)
76 that is equivalent to (l = (Rdiv l (S (S O)))).
77 by _ we proved (tends_to alpha l = tends_to alpha O) (H4).
82 (******************************************************************************)
84 (* Dimostrare che la successione alpha2 diverge *)
86 definition F2 ≝ λ x:R. Rmult x x.
88 definition alpha2 ≝ successione F2 (S (S O)).
90 lemma uno: ∀n. alpha2 n ≥ R1.
91 we need to prove (∀n. alpha2 n ≥ R1).
93 we proceed by induction on n to prove (alpha2 n ≥ R1).
95 alias num (instance 0) = "natural number".
96 we need to prove (alpha2 0 ≥ R1)
97 or equivalently ((S (S O)) ≥ R1).
100 by induction hypothesis we know (alpha2 m ≥ R1) (H).
101 we need to prove (alpha2 (S m) ≥ R1)
102 or equivalently (Rmult (alpha2 m) (alpha2 m) ≥ R1).letin xxx := (n ≤ n);
103 by _ we proved (R1 · R1 ≤ alpha2 m · alpha2 m) (H1).
104 by _ we proved (R1 · R1 = R1) (H2).
109 lemma mono1: monotone_not_decreasing alpha2.
110 we need to prove (monotone_not_decreasing alpha2)
111 or equivalently (∀n:nat. alpha2 n ≤ alpha2 (S n)).
113 we need to prove (alpha2 n ≤ alpha2 (S n))
114 or equivalently (alpha2 n ≤ Rmult (alpha2 n) (alpha2 n)).
119 lemma due: ∀n. Relev (alpha2 0) n ≥ R0.
120 we need to prove (∀n. Relev (alpha2 0) n ≥ R0)
121 or equivalently (∀n. Relev (S (S O)) n ≥ R0).
125 lemma tre: ∀n. alpha2 (S n) ≥ Relev (alpha2 0) (S n).
126 we need to prove (∀n. alpha2 (S n) ≥ Relev (alpha2 0) (S n)).
128 we proceed by induction on n to prove (alpha2 (S n) ≥ Relev (alpha2 0) (S n)).
130 we need to prove (alpha2 1 ≥ Relev (alpha2 0) R1)
131 or equivalently (Rmult R2 R2 ≥ R2).
134 by induction hypothesis we know (alpha2 (S m) ≥ Relev (alpha2 0) (S m)) (H).
135 we need to prove (alpha2 (S (S m)) ≥ Relev (alpha2 0) (S (S m)))
139 theorem dim2: tends_to_inf alpha2.
144 (******************************************************************************)
146 (* Dimostrare che la successione alpha3 converge a 0 *)
148 definition alpha3 ≝ successione F2 (Rdiv (S 0) (S (S 0))).
150 lemma quattro: ∀n. alpha3 n ≤ R1.
152 we need to prove (∀n. alpha3 n ≤ R1).
153 we proceed by induction on n to prove (alpha3 n ≤ R1).
155 we need to prove (alpha3 0 ≤ R1).
158 by induction hypothesis we know (alpha3 m ≤ R1) (H).
159 we need to prove (alpha3 (S m) ≤ R1)
160 or equivalently (Rmult (alpha3 m) (alpha3 m) ≤ R1).
164 lemma mono3: monotone_not_increasing alpha3.
165 we need to prove (monotone_not_increasing alpha3)
166 or equivalently (∀n:nat. alpha (S n) ≤ alpha n).
168 we need to prove (alpha (S n) ≤ alpha n)
169 or equivalently (Rmult (alpha3 n) (alpha3 n) ≤ alpha3 n).
173 lemma bound3: inf_bounded alpha3.
174 we need to prove (inf_bounded alpha3)
175 or equivalently (∃m. ∀n:nat. m ≤ alpha3 n).
176 (* da trovare il modo giusto *)
177 cut (∀n:nat.R0 ≤ alpha3 n).by (ex_intro ? ? R0 Hcut) done.
179 we need to prove (∀n:nat. R0 ≤ alpha3 n).
181 we proceed by induction on n to prove (R0 ≤ alpha3 n).
184 the thesis becomes (R0 ≤ alpha O)
185 or equivalently (R0 ≤ R1).
187 (* approssimiamo con questo *)
188 we need to prove (R0 ≤ alpha3 O)
189 or equivalently (R0 ≤ Rdiv (S 0) (S (S 0))).
192 by induction hypothesis we know (R0 ≤ alpha3 m) (H).
193 we need to prove (R0 ≤ alpha3 (S m))
194 or equivalently (R0 ≤ Rmult (alpha3 m) (alpha3 m)).
198 theorem dim3: tends_to alpha3 O.