1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/Fsub/util".
16 include "logic/equality.ma".
17 include "nat/compare.ma".
18 include "list/list.ma".
20 (*** useful definitions and lemmas not really related to Fsub ***)
22 lemma eqb_case : \forall x,y.(eqb x y) = true \lor (eqb x y) = false.
23 intros;elim (eqb x y);auto;
26 lemma eq_eqb_case : \forall x,y.((x = y) \land (eqb x y) = true) \lor
27 ((x \neq y) \land (eqb x y) = false).
28 intros;lapply (eqb_to_Prop x y);elim (eqb_case x y)
29 [rewrite > H in Hletin;simplify in Hletin;left;auto
30 |rewrite > H in Hletin;simplify in Hletin;right;auto]
36 |false \Rightarrow m].
38 inductive in_list (A : Set) : A \to (list A) \to Prop \def
39 | in_Base : \forall x:A.\forall l:(list A).
40 (in_list A x (x :: l))
41 | in_Skip : \forall x,y:A.\forall l:(list A).
42 (in_list A x l) \to (in_list A x (y :: l)).
44 definition incl : \forall A.(list A) \to (list A) \to Prop \def
45 \lambda A,l,m.\forall x.(in_list A x l) \to (in_list A x m).
47 (* FIXME: use the map in library/list (when there will be one) *)
48 definition map : \forall A,B,f.((list A) \to (list B)) \def
49 \lambda A,B,f.let rec map (l : (list A)) : (list B) \def
50 match l in list return \lambda l0:(list A).(list B) with
51 [nil \Rightarrow (nil B)
52 |(cons (a:A) (t:(list A))) \Rightarrow
53 (cons B (f a) (map t))] in map.
55 definition swap : nat \to nat \to nat \to nat \def
56 \lambda u,v,x.match (eqb x u) with
58 |false \Rightarrow match (eqb x v) with
60 |false \Rightarrow x]].
62 lemma in_list_nil : \forall A,x.\lnot (in_list A x []).
63 intros.unfold.intro.inversion H
64 [intros;lapply (sym_eq ? ? ? H2);absurd (a::l = [])
65 [assumption|apply nil_cons]
66 |intros;lapply (sym_eq ? ? ? H4);absurd (a1::l = [])
67 [assumption|apply nil_cons]]
70 lemma notin_cons : \forall A,x,y,l.\lnot (in_list A x (y::l)) \to
71 (y \neq x) \land \lnot (in_list A x l).
73 [unfold;intro;apply H;rewrite > H1;constructor 1
74 |unfold;intro;apply H;constructor 2;assumption]
77 lemma swap_left : \forall x,y.(swap x y x) = y.
78 intros;unfold swap;rewrite > eqb_n_n;simplify;reflexivity;
81 lemma swap_right : \forall x,y.(swap x y y) = x.
82 intros;unfold swap;elim (eq_eqb_case y x)
83 [elim H;rewrite > H2;simplify;rewrite > H1;reflexivity
84 |elim H;rewrite > H2;simplify;rewrite > eqb_n_n;simplify;reflexivity]
87 lemma swap_other : \forall x,y,z.(z \neq x) \to (z \neq y) \to (swap x y z) = z.
88 intros;unfold swap;elim (eq_eqb_case z x)
89 [elim H2;lapply (H H3);elim Hletin
90 |elim H2;rewrite > H4;simplify;elim (eq_eqb_case z y)
91 [elim H5;lapply (H1 H6);elim Hletin
92 |elim H5;rewrite > H7;simplify;reflexivity]]
95 lemma swap_inv : \forall u,v,x.(swap u v (swap u v x)) = x.
96 intros;unfold in match (swap u v x);elim (eq_eqb_case x u)
97 [elim H;rewrite > H2;simplify;rewrite > H1;apply swap_right
98 |elim H;rewrite > H2;simplify;elim (eq_eqb_case x v)
99 [elim H3;rewrite > H5;simplify;rewrite > H4;apply swap_left
100 |elim H3;rewrite > H5;simplify;apply (swap_other ? ? ? H1 H4)]]
103 lemma swap_inj : \forall u,v,x,y.(swap u v x) = (swap u v y) \to x = y.
104 intros;unfold swap in H;elim (eq_eqb_case x u)
105 [elim H1;elim (eq_eqb_case y u)
106 [elim H4;rewrite > H5;assumption
107 |elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H;
108 elim (eq_eqb_case y v)
109 [elim H7;rewrite > H9 in H;simplify in H;rewrite > H in H8;
110 lapply (H5 H8);elim Hletin
111 |elim H7;rewrite > H9 in H;simplify in H;elim H8;symmetry;assumption]]
112 |elim H1;elim (eq_eqb_case y u)
113 [elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H;
114 elim (eq_eqb_case x v)
115 [elim H7;rewrite > H9 in H;simplify in H;rewrite < H in H8;
117 |elim H7;rewrite > H9 in H;simplify in H;elim H8;assumption]
118 |elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H;
119 elim (eq_eqb_case x v)
120 [elim H7;rewrite > H9 in H;elim (eq_eqb_case y v)
121 [elim H10;rewrite > H11;assumption
122 |elim H10;rewrite > H12 in H;simplify in H;elim H5;symmetry;
124 |elim H7;rewrite > H9 in H;elim (eq_eqb_case y v)
125 [elim H10;rewrite > H12 in H;simplify in H;elim H2;assumption
126 |elim H10;rewrite > H12 in H;simplify in H;assumption]]]]
129 lemma max_case : \forall m,n.(max m n) = match (leb m n) with
130 [ false \Rightarrow n
131 | true \Rightarrow m ].
132 intros;elim m;simplify;reflexivity;