1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/Z/z".
17 include "datatypes/bool.ma".
20 inductive Z : Set \def
25 definition Z_of_nat \def
26 \lambda n. match n with
28 | (S n)\Rightarrow pos n].
30 coercion cic:/matita/Z/z/Z_of_nat.con.
32 definition neg_Z_of_nat \def
33 \lambda n. match n with
35 | (S n)\Rightarrow neg n].
37 lemma pos_n_eq_S_n : \forall n : nat.
46 | (pos n) \Rightarrow (S n)
47 | (neg n) \Rightarrow (S n)].
49 definition OZ_test \def
53 | (pos n) \Rightarrow false
54 | (neg n) \Rightarrow false].
56 theorem OZ_test_to_Prop :\forall z:Z.
58 [true \Rightarrow z=OZ
59 |false \Rightarrow z \neq OZ].
62 simplify. unfold Not. intros (H).
64 simplify. unfold Not. intros (H).
69 theorem injective_pos: injective nat Z pos.
73 change with (abs (pos x) = abs (pos y)).
74 apply eq_f.assumption.
77 variant inj_pos : \forall n,m:nat. pos n = pos m \to n = m
80 theorem injective_neg: injective nat Z neg.
84 change with (abs (neg x) = abs (neg y)).
85 apply eq_f.assumption.
88 variant inj_neg : \forall n,m:nat. neg n = neg m \to n = m
91 theorem not_eq_OZ_pos: \forall n:nat. OZ \neq pos n.
92 unfold Not.intros (n H).
96 theorem not_eq_OZ_neg :\forall n:nat. OZ \neq neg n.
97 unfold Not.intros (n H).
101 theorem not_eq_pos_neg :\forall n,m:nat. pos n \neq neg m.
102 unfold Not.intros (n m H).
106 theorem decidable_eq_Z : \forall x,y:Z. decidable (x=y).
107 intros.unfold decidable.
111 (* goal: x=OZ y=OZ *)
114 right.apply not_eq_OZ_pos.
116 right.apply not_eq_OZ_neg.
119 (* goal: x=pos y=OZ *)
120 right.unfold Not.intro.
121 apply (not_eq_OZ_pos n). symmetry. assumption.
122 (* goal: x=pos y=pos *)
123 elim (decidable_eq_nat n n1:((n=n1) \lor ((n=n1) \to False))).
124 left.apply eq_f.assumption.
125 right.unfold Not.intros (H_inj).apply H. destruct H_inj. reflexivity.
126 (* goal: x=pos y=neg *)
127 right.unfold Not.intro.apply (not_eq_pos_neg n n1). assumption.
130 (* goal: x=neg y=OZ *)
131 right.unfold Not.intro.
132 apply (not_eq_OZ_neg n). symmetry. assumption.
133 (* goal: x=neg y=pos *)
134 right. unfold Not.intro. apply (not_eq_pos_neg n1 n). symmetry. assumption.
135 (* goal: x=neg y=neg *)
136 elim (decidable_eq_nat n n1:((n=n1) \lor ((n=n1) \to False))).
137 left.apply eq_f.assumption.
138 right.unfold Not.intro.apply H.apply injective_neg.assumption.
141 (* end discrimination *)
143 definition Zsucc \def
144 \lambda z. match z with
145 [ OZ \Rightarrow pos O
146 | (pos n) \Rightarrow pos (S n)
147 | (neg n) \Rightarrow
150 | (S p) \Rightarrow neg p]].
152 definition Zpred \def
153 \lambda z. match z with
154 [ OZ \Rightarrow neg O
155 | (pos n) \Rightarrow
158 | (S p) \Rightarrow pos p]
159 | (neg n) \Rightarrow neg (S n)].
161 theorem Zpred_Zsucc: \forall z:Z. Zpred (Zsucc z) = z.
171 theorem Zsucc_Zpred: \forall z:Z. Zsucc (Zpred z) = z.