1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
17 inductive sequence (O:Type) : Type ≝
18 | mk_seq : (nat → O) → sequence O.
20 definition fun_of_seq: ∀O:Type.sequence O → nat → O ≝
21 λO.λx:sequence O.match x with [ mk_seq f ⇒ f ].
23 coercion fun_of_seq 1.
25 notation < "hvbox((\lfloor term 19 p \rfloor) \sub ident i)" with precedence 90
26 for @{ 'sequence (\lambda ${ident i} : $t . $p)}.
28 notation > "hvbox((\lfloor term 19 p \rfloor) \sub ident i)" with precedence 90
29 for @{ 'sequence (\lambda ${ident i} . $p)}.
31 notation > "hvbox(\lfloor ident i, term 19 p \rfloor)" with precedence 90
32 for @{ 'sequence (\lambda ${ident i} . $p)}.
34 notation "a \sub i" left associative with precedence 90
35 for @{ 'sequence_appl $a $i }.
37 interpretation "sequence" 'sequence \eta.x = (mk_seq _ x).
38 interpretation "sequence element" 'sequence_appl s i = (fun_of_seq _ s i).