1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "dama/supremum.ma".
18 alias symbol "pair" = "Pair construction".
19 alias symbol "exists" = "exists".
20 alias symbol "and" = "logical and".
21 definition compose_bs_relations ≝
22 λC:bishop_set.λU,V:C squareB → Prop.
23 λx:C squareB.∃y:C. U 〈\fst x,y〉 ∧ V 〈y,\snd x〉.
25 definition compose_os_relations ≝
26 λC:ordered_set.λU,V:C squareB → Prop.
27 λx:C squareB.∃y:C. U 〈\fst x,y〉 ∧ V 〈y,\snd x〉.
29 interpretation "bishop set relations composition" 'compose a b = (compose_bs_relations ? a b).
30 interpretation "ordered set relations composition" 'compose a b = (compose_os_relations ? a b).
32 definition invert_bs_relation ≝
33 λC:bishop_set.λU:C squareB → Prop.
34 λx:C squareB. U 〈\snd x,\fst x〉.
36 notation > "\inv" with precedence 60 for @{ 'invert_symbol }.
37 interpretation "relation invertion" 'invert a = (invert_bs_relation ? a).
38 interpretation "relation invertion" 'invert_symbol = (invert_bs_relation ?).
39 interpretation "relation invertion" 'invert_appl a x = (invert_bs_relation ? a x).
41 alias symbol "exists" = "CProp exists".
42 alias symbol "compose" = "bishop set relations composition".
43 alias symbol "and" (instance 21) = "constructive and".
44 alias symbol "and" (instance 16) = "constructive and".
45 alias symbol "and" (instance 9) = "constructive and".
46 record uniform_space : Type ≝ {
48 us_unifbase: (us_carr squareB → Prop) → CProp;
49 us_phi1: ∀U:us_carr squareB → Prop. us_unifbase U →
50 (λx:us_carr squareB.\fst x ≈ \snd x) ⊆ U;
51 us_phi2: ∀U,V:us_carr squareB → Prop. us_unifbase U → us_unifbase V →
52 ∃W:us_carr squareB → Prop.us_unifbase W ∧ (W ⊆ (λx.U x ∧ V x));
53 us_phi3: ∀U:us_carr squareB → Prop. us_unifbase U →
54 ∃W:us_carr squareB → Prop.us_unifbase W ∧ (W ∘ W) ⊆ U;
55 us_phi4: ∀U:us_carr squareB → Prop. us_unifbase U → ∀x.(U x → (\inv U) x) ∧ ((\inv U) x → U x)
59 alias symbol "leq" = "natural 'less or equal to'".
61 λC:uniform_space.λa:sequence C.∀U.us_unifbase C U →
62 ∃n. ∀i,j. n ≤ i → n ≤ j → U 〈a i,a j〉.
64 notation < "a \nbsp 'is_cauchy'" non associative with precedence 45
66 notation > "a 'is_cauchy'" non associative with precedence 45
68 interpretation "Cauchy sequence" 'cauchy s = (cauchy ? s).
71 definition uniform_converge ≝
72 λC:uniform_space.λa:sequence C.λu:C.
73 ∀U.us_unifbase C U → ∃n. ∀i. n ≤ i → U 〈u,a i〉.
75 notation < "a \nbsp (\u \atop (\horbar\triangleright)) \nbsp x" non associative with precedence 45
76 for @{'uniform_converge $a $x}.
77 notation > "a 'uniform_converges' x" non associative with precedence 45
78 for @{'uniform_converge $a $x}.
79 interpretation "Uniform convergence" 'uniform_converge s u =
80 (uniform_converge ? s u).
83 lemma uniform_converge_is_cauchy :
84 ∀C:uniform_space.∀a:sequence C.∀x:C.
85 a uniform_converges x → a is_cauchy.
86 intros (C a x Ha); intros 2 (u Hu);
87 cases (us_phi3 ?? Hu) (v Hv0); cases Hv0 (Hv H); clear Hv0;
88 cases (Ha ? Hv) (n Hn); exists [apply n]; intros;
89 apply H; unfold; exists [apply x]; split [2: apply (Hn ? H2)]
90 cases (us_phi4 ?? Hv 〈a i,x〉) (P1 P2); apply P2;