1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "formal_topology/relations.ma".
16 include "datatypes/categories.ma".
17 include "formal_topology/saturations_reductions.ma".
19 record basic_topology: Type ≝
21 A: unary_morphism (Ω \sup carrbt) (Ω \sup carrbt);
22 J: unary_morphism (Ω \sup carrbt) (Ω \sup carrbt);
23 A_is_saturation: is_saturation ? A;
24 J_is_reduction: is_reduction ? J;
25 compatibility: ∀U,V. (A U ≬ J V) = (U ≬ J V)
28 record continuous_relation (S,T: basic_topology) : Type ≝
29 { cont_rel:> arrows1 ? S T;
30 reduced: ∀U. U = J ? U → image ?? cont_rel U = J ? (image ?? cont_rel U);
31 saturated: ∀U. U = A ? U → minus_star_image ?? cont_rel U = A ? (minus_star_image ?? cont_rel U)
34 definition continuous_relation_setoid: basic_topology → basic_topology → setoid1.
35 intros (S T); constructor 1;
36 [ apply (continuous_relation S T)
38 [ apply (λr,s:continuous_relation S T.∀b. A ? (ext ?? r b) = A ? (ext ?? s b));
39 | simplify; intros; apply refl1;
40 | simplify; intros; apply sym1; apply H
41 | simplify; intros; apply trans1; [2: apply H |3: apply H1; |1: skip]]]
44 definition cont_rel': ∀S,T: basic_topology. continuous_relation_setoid S T → arrows1 ? S T ≝ cont_rel.
48 definition cont_rel'': ∀S,T: basic_topology. continuous_relation_setoid S T → binary_relation S T ≝ cont_rel.
52 theorem continuous_relation_eq':
53 ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
54 a = a' → ∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X).
55 intros; split; intro; unfold minus_star_image; simplify; intros;
56 [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;]
57 lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut;
58 cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption]
59 lapply (fi ?? (A_is_saturation ???) Hcut);
60 apply (Hletin1 x); change with (x ∈ ext ?? a' a1); split; simplify;
61 [ apply I | assumption ]
62 | cut (ext ?? a' a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;]
63 lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut;
64 cut (A ? (ext ?? a a1) ⊆ A ? X); [2: apply (. (H ?)\sup -1‡#); assumption]
65 lapply (fi ?? (A_is_saturation ???) Hcut);
66 apply (Hletin1 x); change with (x ∈ ext ?? a a1); split; simplify;
67 [ apply I | assumption ]]
70 theorem continuous_relation_eq_inv':
71 ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
72 (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'.
74 cut (∀a,a': continuous_relation_setoid o1 o2.
75 (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) →
76 ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V));
77 [2: clear b H a' a; intros;
78 lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip]
79 (* fundamental adjunction here! to be taken out *)
80 cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a (A ? (extS ?? a V)));
81 [2: intro; intros 2; unfold minus_star_image; simplify; intros;
82 apply (Hletin V1 x); whd; split; [ exact I | exists; [apply a1] split; assumption]]
84 cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a' (A ? (extS ?? a V)));
85 [2: intro; apply (. #‡(H ?)); apply Hcut] clear H Hcut;
86 (* second half of the fundamental adjunction here! to be taken out too *)
87 intro; lapply (Hcut1 (singleton ? V)); clear Hcut1;
88 unfold minus_star_image in Hletin; unfold singleton in Hletin; simplify in Hletin;
89 whd in Hletin; whd in Hletin:(?→?→%); simplify in Hletin;
90 apply (if ?? (A_is_saturation ???));
91 intros 2 (x H); lapply (Hletin V ? x ?);
92 [ apply refl | cases H; assumption; ]
93 change with (x ∈ A ? (ext ?? a V));
94 apply (. #‡(†(extS_singleton ????)));
96 split; apply Hcut; [2: assumption | intro; apply sym1; apply H]
99 definition continuous_relation_comp:
101 continuous_relation_setoid o1 o2 →
102 continuous_relation_setoid o2 o3 →
103 continuous_relation_setoid o1 o3.
104 intros (o1 o2 o3 r s); constructor 1;
108 apply (.= †(image_comp ??????));
109 apply (.= (reduced ?????)\sup -1);
110 [ apply (.= (reduced ?????)); [ assumption | apply refl1 ]
111 | apply (.= (image_comp ??????)\sup -1);
115 apply (.= †(minus_star_image_comp ??????));
116 apply (.= (saturated ?????)\sup -1);
117 [ apply (.= (saturated ?????)); [ assumption | apply refl1 ]
118 | apply (.= (minus_star_image_comp ??????)\sup -1);
122 definition BTop: category1.
124 [ apply basic_topology
125 | apply continuous_relation_setoid
126 | intro; constructor 1;
129 apply (.= (image_id ??));
131 apply (.= †(image_id ??));
135 apply (.= (minus_star_image_id ??));
137 apply (.= †(minus_star_image_id ??));
140 | intros; constructor 1;
141 [ apply continuous_relation_comp;
142 | intros; simplify; intro x; simplify;
143 lapply depth=0 (continuous_relation_eq' ???? H) as H';
144 lapply depth=0 (continuous_relation_eq' ???? H1) as H1';
145 letin K ≝ (λX.H1' (minus_star_image ?? a (A ? X))); clearbody K;
147 minus_star_image o2 o3 b (A o2 (minus_star_image o1 o2 a (A o1 X)))
148 = minus_star_image o2 o3 b' (A o2 (minus_star_image o1 o2 a' (A o1 X))));
149 [2: intro; apply sym1; apply (.= #‡(†((H' ?)\sup -1))); apply sym1; apply (K X);]
152 minus_star_image o1 o3 (b ∘ a) (A o1 X) = minus_star_image o1 o3 (b'∘a') (A o1 X));
154 apply (.= (minus_star_image_comp ??????));
155 apply (.= #‡(saturated ?????));
156 [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ]
158 apply (.= (minus_star_image_comp ??????));
159 apply (.= #‡(saturated ?????));
160 [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ]
161 apply ((Hcut X) \sup -1)]
162 clear Hcut; generalize in match x; clear x;
163 apply (continuous_relation_eq_inv');
165 | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify;
166 apply (.= †(ASSOC1‡#));
168 | intros; simplify; intro; unfold continuous_relation_comp; simplify;
169 apply (.= †((id_neutral_right1 ????)‡#));
171 | intros; simplify; intro; simplify;
172 apply (.= †((id_neutral_left1 ????)‡#));
177 (* this proof is more logic-oriented than set/lattice oriented *)
178 theorem continuous_relation_eqS:
179 ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2.
180 a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X).
182 cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y);
183 [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split;
184 try assumption; split; assumption]
185 cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y));
186 [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption;
188 apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x);
189 assumption;] clear Hcut;
190 split; apply (if ?? (A_is_saturation ???)); intros 2;
191 [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)]
192 cases Hletin; clear Hletin; cases x; clear x;
193 cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X);
194 [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption;
195 exists [1,3: apply w] split; assumption;]
196 cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X));
197 [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;]
198 apply Hcut2; assumption.