]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/library/formal_topology/saturations_reductions.ma.dontcompile
demodulate takes an extra argument 'all', if present it attempts to solve
[helm.git] / helm / software / matita / library / formal_topology / saturations_reductions.ma.dontcompile
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "datatypes/subsets.ma".
16 include "formal_topology/relations.ma".
17
18 definition is_saturation ≝
19  λC:REL.λA:unary_morphism (Ω \sup C) (Ω \sup C).
20   ∀U,V. (U ⊆ A V) = (A U ⊆ A V).
21
22 definition is_reduction ≝
23  λC:REL.λJ:unary_morphism (Ω \sup C) (Ω \sup C).
24   ∀U,V. (J U ⊆ V) = (J U ⊆ J V).
25
26 theorem saturation_expansive: ∀C,A. is_saturation C A → ∀U. U ⊆ A U.
27  intros; apply (fi ?? (H ??)); apply subseteq_refl.
28 qed.
29
30 theorem saturation_monotone:
31  ∀C,A. is_saturation C A →
32   ∀U,V. U ⊆ V → A U ⊆ A V.
33  intros; apply (if ?? (H ??)); apply subseteq_trans; [apply V|3: apply saturation_expansive ]
34  assumption.
35 qed.
36
37 theorem saturation_idempotent: ∀C,A. is_saturation C A → ∀U. A (A U) = A U.
38  intros; split;
39   [ apply (if ?? (H ??)); apply subseteq_refl
40   | apply saturation_expansive; assumption]
41 qed.