1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 include "logic/connectives.ma".
17 definition relation : Type \to Type
18 \def \lambda A:Type.A \to A \to Prop.
20 definition reflexive: \forall A:Type.\forall R :relation A.Prop
22 \lambda A.\lambda R.\forall x:A.R x x.
24 definition symmetric: \forall A:Type.\forall R: relation A.Prop
26 \lambda A.\lambda R.\forall x,y:A.R x y \to R y x.
28 definition transitive: \forall A:Type.\forall R:relation A.Prop
30 \lambda A.\lambda R.\forall x,y,z:A.R x y \to R y z \to R x z.
32 definition irreflexive: \forall A:Type.\forall R:relation A.Prop
34 \lambda A.\lambda R.\forall x:A.\lnot (R x x).
36 definition cotransitive: \forall A:Type.\forall R:relation A.Prop
38 \lambda A.\lambda R.\forall x,y:A.R x y \to \forall z:A. R x z \lor R z y.
40 definition tight_apart: \forall A:Type.\forall eq,ap:relation A.Prop
42 \lambda A.\lambda eq,ap.\forall x,y:A. (\not (ap x y) \to eq x y) \land
43 (eq x y \to \not (ap x y)).
45 definition antisymmetric: \forall A:Type.\forall R:relation A.Prop
47 \lambda A.\lambda R.\forall x,y:A. R x y \to \not (R y x).