1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "logic/connectives.ma".
17 definition Iff : Prop \to Prop \to Prop \def
18 \lambda A,B. (A \to B) \land (B \to A).
20 interpretation "logical iff" 'iff x y = (Iff x y).
22 theorem iff_intro: \forall A,B. (A \to B) \to (B \to A) \to (A \liff B).
23 unfold Iff. intros. split; intros; autobatch.
26 theorem iff_refl: \forall A. A \liff A.
27 intros. apply iff_intro; intros; autobatch.
30 theorem iff_sym: \forall A,B. A \liff B \to B \liff A.
31 intros. elim H. apply iff_intro[assumption|assumption]
34 theorem iff_trans: \forall A,B,C. A \liff B \to B \liff C \to A \liff C.
35 intros. elim H. elim H1. apply iff_intro;intros;autobatch.