1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / Matita is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 include "nat/le_arith.ma".
20 | (S m) \Rightarrow (S m)*(fact m)].
22 interpretation "factorial" 'fact n = (fact n).
24 theorem le_SO_fact : \forall n. (S O) \le n!.
25 intro.elim n.simplify.apply le_n.
26 change with ((S O) \le (S n1)*n1!).
27 apply (trans_le ? ((S n1)*(S O))).simplify.
28 apply le_S_S.apply le_O_n.
29 apply le_times_r.assumption.
32 theorem le_SSO_fact : \forall n. (S O) < n \to (S(S O)) \le n!.
33 intro.apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O (S O) H).
34 intros.change with ((S (S O)) \le (S m)*m!).
35 apply (trans_le ? ((S(S O))*(S O))).apply le_n.
36 apply le_times.exact H.apply le_SO_fact.
39 theorem le_n_fact_n: \forall n. n \le n!.
40 intro. elim n.apply le_O_n.
41 change with (S n1 \le (S n1)*n1!).
42 apply (trans_le ? ((S n1)*(S O))).
43 rewrite < times_n_SO.apply le_n.
44 apply le_times.apply le_n.
48 theorem lt_n_fact_n: \forall n. (S(S O)) < n \to n < n!.
49 intro.apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O (S(S O)) H).
50 intros.change with ((S m) < (S m)*m!).
51 apply (lt_to_le_to_lt ? ((S m)*(S (S O)))).
54 apply le_S_S.rewrite < plus_n_O.
56 apply le_times_r.apply le_SSO_fact.
57 simplify.unfold lt.apply le_S_S_to_le.exact H.