1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/nat/lt_arith".
17 include "nat/div_and_mod.ma".
20 theorem monotonic_lt_plus_r:
21 \forall n:nat.monotonic nat lt (\lambda m.n+m).
23 elim n.simplify.assumption.
25 apply le_S_S.assumption.
28 variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def
31 theorem monotonic_lt_plus_l:
32 \forall n:nat.monotonic nat lt (\lambda m.m+n).
35 rewrite < sym_plus. rewrite < (sym_plus n).
36 apply lt_plus_r.assumption.
39 variant lt_plus_l: \forall n,p,q:nat. p < q \to p + n < q + n \def
42 theorem lt_plus: \forall n,m,p,q:nat. n < m \to p < q \to n + p < m + q.
44 apply (trans_lt ? (n + q)).
45 apply lt_plus_r.assumption.
46 apply lt_plus_l.assumption.
49 theorem lt_plus_to_lt_l :\forall n,p,q:nat. p+n < q+n \to p<q.
52 rewrite > (plus_n_O q).assumption.
54 unfold lt.apply le_S_S_to_le.
56 rewrite > (plus_n_Sm q).
60 theorem lt_plus_to_lt_r :\forall n,p,q:nat. n+p < n+q \to p<q.
61 intros.apply (lt_plus_to_lt_l n).
63 rewrite > (sym_plus q).assumption.
66 theorem le_to_lt_to_plus_lt: \forall a,b,c,d:nat.
67 a \le c \to b \lt d \to (a + b) \lt (c+d).
69 cut (a \lt c \lor a = c)
74 apply (lt_plus_r c b d).
77 | apply le_to_or_lt_eq.
84 theorem lt_O_times_S_S: \forall n,m:nat.O < (S n)*(S m).
85 intros.simplify.unfold lt.apply le_S_S.apply le_O_n.
88 theorem lt_times_eq_O: \forall a,b:nat.
89 O \lt a \to (a * b) = O \to b = O.
96 rewrite > (S_pred a) in H1
98 apply (eq_to_not_lt O ((S (pred a))*(S m)))
101 | apply lt_O_times_S_S
108 theorem O_lt_times_to_O_lt: \forall a,c:nat.
109 O \lt (a * c) \to O \lt a.
122 theorem monotonic_lt_times_r:
123 \forall n:nat.monotonic nat lt (\lambda m.(S n)*m).
126 simplify.rewrite < plus_n_O.rewrite < plus_n_O.assumption.
127 apply lt_plus.assumption.assumption.
130 (* a simple variant of the previus monotionic_lt_times *)
131 theorem monotonic_lt_times_variant: \forall c:nat.
132 O \lt c \to monotonic nat lt (\lambda t.(t*c)).
134 apply (increasing_to_monotonic).
139 rewrite > plus_n_O in \vdash (? % ?).
144 theorem lt_times_r: \forall n,p,q:nat. p < q \to (S n) * p < (S n) * q
145 \def monotonic_lt_times_r.
147 theorem monotonic_lt_times_l:
148 \forall m:nat.monotonic nat lt (\lambda n.n * (S m)).
151 rewrite < sym_times.rewrite < (sym_times (S m)).
152 apply lt_times_r.assumption.
155 variant lt_times_l: \forall n,p,q:nat. p<q \to p*(S n) < q*(S n)
156 \def monotonic_lt_times_l.
158 theorem lt_times:\forall n,m,p,q:nat. n<m \to p<q \to n*p < m*q.
161 apply (lt_O_n_elim m H).
164 apply (lt_O_n_elim q Hcut).
165 intro.change with (O < (S m1)*(S m2)).
166 apply lt_O_times_S_S.
167 apply (ltn_to_ltO p q H1).
168 apply (trans_lt ? ((S n1)*q)).
169 apply lt_times_r.assumption.
171 apply (lt_O_n_elim q Hcut).
175 apply (ltn_to_ltO p q H2).
179 \forall n,m,p. O < n \to m < p \to n*m < n*p.
181 elim H;apply lt_times_r;assumption.
185 \forall n,m,p. O < n \to m < p \to m*n < p*n.
187 elim H;apply lt_times_l;assumption.
190 theorem lt_to_le_to_lt_times :
191 \forall n,n1,m,m1. n < n1 \to m \le m1 \to O < m1 \to n*m < n1*m1.
193 apply (le_to_lt_to_lt ? (n*m1))
194 [apply le_times_r.assumption
196 [assumption|assumption]
200 theorem lt_times_to_lt_l:
201 \forall n,p,q:nat. p*(S n) < q*(S n) \to p < q.
203 cut (p < q \lor p \nlt q).
206 absurd (p * (S n) < q * (S n)).
212 exact (decidable_lt p q).
215 theorem lt_times_n_to_lt:
216 \forall n,p,q:nat. O < n \to p*n < q*n \to p < q.
219 [intros.apply False_ind.apply (not_le_Sn_n ? H)
220 |intros 4.apply lt_times_to_lt_l
224 theorem lt_times_to_lt_r:
225 \forall n,p,q:nat. (S n)*p < (S n)*q \to lt p q.
227 apply (lt_times_to_lt_l n).
229 rewrite < (sym_times (S n)).
233 theorem lt_times_n_to_lt_r:
234 \forall n,p,q:nat. O < n \to n*p < n*q \to lt p q.
237 [intros.apply False_ind.apply (not_le_Sn_n ? H)
238 |intros 4.apply lt_times_to_lt_r
242 theorem nat_compare_times_l : \forall n,p,q:nat.
243 nat_compare p q = nat_compare ((S n) * p) ((S n) * q).
244 intros.apply nat_compare_elim.intro.
245 apply nat_compare_elim.
248 apply (inj_times_r n).assumption.
249 apply lt_to_not_eq. assumption.
251 apply (lt_times_to_lt_r n).assumption.
252 apply le_to_not_lt.apply lt_to_le.assumption.
253 intro.rewrite < H.rewrite > nat_compare_n_n.reflexivity.
254 intro.apply nat_compare_elim.intro.
256 apply (lt_times_to_lt_r n).assumption.
257 apply le_to_not_lt.apply lt_to_le.assumption.
260 apply (inj_times_r n).assumption.
261 apply lt_to_not_eq.assumption.
266 theorem lt_times_plus_times: \forall a,b,n,m:nat.
267 a < n \to b < m \to a*m + b < n*m.
270 [intros.apply False_ind.apply (not_le_Sn_O ? H)
274 change with (S b+a*m1 \leq m1+m*m1).
278 [apply le_S_S_to_le.assumption
287 theorem eq_mod_O_to_lt_O_div: \forall n,m:nat. O < m \to O < n\to n \mod m = O \to O < n / m.
288 intros 4.apply (lt_O_n_elim m H).intros.
289 apply (lt_times_to_lt_r m1).
291 rewrite > (plus_n_O ((S m1)*(n / (S m1)))).
297 unfold lt.apply le_S_S.apply le_O_n.
300 theorem lt_div_n_m_n: \forall n,m:nat. (S O) < m \to O < n \to n / m \lt n.
302 apply (nat_case1 (n / m)).intro.
303 assumption.intros.rewrite < H2.
304 rewrite > (div_mod n m) in \vdash (? ? %).
305 apply (lt_to_le_to_lt ? ((n / m)*m)).
306 apply (lt_to_le_to_lt ? ((n / m)*(S (S O)))).
319 apply (trans_lt ? (S O)).
320 unfold lt. apply le_n.assumption.
324 (* Forall a,b : N. 0 < b \to b * (a/b) <= a < b * (a/b +1) *)
325 (* The theorem is shown in two different parts: *)
327 theorem lt_to_div_to_and_le_times_lt_S: \forall a,b,c:nat.
328 O \lt b \to a/b = c \to (b*c \le a \land a \lt b*(S c)).
333 rewrite > eq_times_div_minus_mod
334 [ apply (le_minus_m a (a \mod b))
337 | rewrite < (times_n_Sm b c).
340 rewrite > (div_mod a b) in \vdash (? % ?)
341 [ rewrite > (sym_plus b ((a/b)*b)).
350 theorem lt_to_le_times_to_lt_S_to_div: \forall a,c,b:nat.
351 O \lt b \to (b*c) \le a \to a \lt (b*(S c)) \to a/b = c.
353 apply (le_to_le_to_eq)
354 [ apply (leb_elim (a/b) c);intros
358 apply (lt_to_not_le (a \mod b) O)
359 [ apply (lt_plus_to_lt_l ((a/b)*b)).
363 [ apply (lt_to_le_to_lt ? (b*(S c)) ?)
365 | rewrite > (sym_times (a/b) b).
373 | apply not_le_to_lt.
377 | apply (leb_elim c (a/b));intros
381 apply (lt_to_not_le (a \mod b) b)
382 [ apply (lt_mod_m_m).
384 | apply (le_plus_to_le ((a/b)*b)).
385 rewrite < (div_mod a b)
386 [ apply (trans_le ? (b*c) ?)
387 [ rewrite > (sym_times (a/b) b).
388 rewrite > (times_n_SO b) in \vdash (? (? ? %) ?).
389 rewrite < distr_times_plus.
391 simplify in \vdash (? (? ? %) ?).
399 | apply not_le_to_lt.
407 theorem lt_to_lt_to_eq_div_div_times_times: \forall a,b,c:nat.
408 O \lt c \to O \lt b \to (a/b) = (a*c)/(b*c).
411 cut (b*(a/b) \le a \land a \lt b*(S (a/b)))
413 apply lt_to_le_times_to_lt_S_to_div
414 [ rewrite > (S_pred b)
415 [ rewrite > (S_pred c)
416 [ apply (lt_O_times_S_S)
421 | rewrite > assoc_times.
422 rewrite > (sym_times c (a/b)).
423 rewrite < assoc_times.
424 rewrite > (sym_times (b*(a/b)) c).
425 rewrite > (sym_times a c).
426 apply (le_times_r c (b*(a/b)) a).
428 | rewrite > (sym_times a c).
429 rewrite > (assoc_times ).
430 rewrite > (sym_times c (S (a/b))).
431 rewrite < (assoc_times).
432 rewrite > (sym_times (b*(S (a/b))) c).
433 apply (lt_times_r1 c a (b*(S (a/b))));
436 | apply (lt_to_div_to_and_le_times_lt_S)
443 theorem times_mod: \forall a,b,c:nat.
444 O \lt c \to O \lt b \to ((a*c) \mod (b*c)) = c*(a\mod b).
446 apply (div_mod_spec_to_eq2 (a*c) (b*c) (a/b) ((a*c) \mod (b*c)) (a/b) (c*(a \mod b)))
447 [ rewrite > (lt_to_lt_to_eq_div_div_times_times a b c)
448 [ apply div_mod_spec_div_mod.
450 [ rewrite > (S_pred c)
451 [ apply lt_O_times_S_S
459 | apply div_mod_spec_intro
460 [ rewrite > (sym_times b c).
461 apply (lt_times_r1 c)
463 | apply (lt_mod_m_m).
466 | rewrite < (assoc_times (a/b) b c).
467 rewrite > (sym_times a c).
468 rewrite > (sym_times ((a/b)*b) c).
469 rewrite < (distr_times_plus c ? ?).
480 (* general properties of functions *)
481 theorem monotonic_to_injective: \forall f:nat\to nat.
482 monotonic nat lt f \to injective nat nat f.
483 unfold injective.intros.
484 apply (nat_compare_elim x y).
485 intro.apply False_ind.apply (not_le_Sn_n (f x)).
486 rewrite > H1 in \vdash (? ? %).
487 change with (f x < f y).
490 intro.apply False_ind.apply (not_le_Sn_n (f y)).
491 rewrite < H1 in \vdash (? ? %).
492 change with (f y < f x).
496 theorem increasing_to_injective: \forall f:nat\to nat.
497 increasing f \to injective nat nat f.
498 intros.apply monotonic_to_injective.
499 apply increasing_to_monotonic.assumption.