1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
16 include "higher_order_defs/ordering.ma".
19 inductive le (n:nat) : nat \to Prop \def
21 | le_S : \forall m:nat. le n m \to le n (S m).
23 interpretation "natural 'less or equal to'" 'leq x y = (cic:/matita/nat/orders/le.ind#xpointer(1/1) x y).
25 interpretation "natural 'neither less nor equal to'" 'nleq x y =
26 (cic:/matita/logic/connectives/Not.con
27 (cic:/matita/nat/orders/le.ind#xpointer(1/1) x y)).
29 definition lt: nat \to nat \to Prop \def
30 \lambda n,m:nat.(S n) \leq m.
32 interpretation "natural 'less than'" 'lt x y = (cic:/matita/nat/orders/lt.con x y).
34 interpretation "natural 'not less than'" 'nless x y =
35 (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/orders/lt.con x y)).
37 definition ge: nat \to nat \to Prop \def
38 \lambda n,m:nat.m \leq n.
40 interpretation "natural 'greater or equal to'" 'geq x y = (cic:/matita/nat/orders/ge.con x y).
42 definition gt: nat \to nat \to Prop \def
45 interpretation "natural 'greater than'" 'gt x y = (cic:/matita/nat/orders/gt.con x y).
47 interpretation "natural 'not greater than'" 'ngtr x y =
48 (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/orders/gt.con x y)).
50 theorem transitive_le : transitive nat le.
51 unfold transitive.intros.elim H1.
53 apply le_S.assumption.
56 theorem trans_le: \forall n,m,p:nat. n \leq m \to m \leq p \to n \leq p
59 theorem transitive_lt: transitive nat lt.
60 unfold transitive.unfold lt.intros.elim H1.
61 apply le_S. assumption.
62 apply le_S.assumption.
65 theorem trans_lt: \forall n,m,p:nat. lt n m \to lt m p \to lt n p
68 theorem le_S_S: \forall n,m:nat. n \leq m \to S n \leq S m.
71 apply le_S.assumption.
74 theorem le_O_n : \forall n:nat. O \leq n.
80 theorem le_n_Sn : \forall n:nat. n \leq S n.
81 intros. apply le_S.apply le_n.
84 theorem le_pred_n : \forall n:nat. pred n \leq n.
87 simplify.apply le_n_Sn.
90 theorem le_S_S_to_le : \forall n,m:nat. S n \leq S m \to n \leq m.
91 intros.change with (pred (S n) \leq pred (S m)).
92 elim H.apply le_n.apply (trans_le ? (pred n1)).assumption.
96 theorem lt_S_S_to_lt: \forall n,m.
98 intros. apply le_S_S_to_le. assumption.
101 theorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m.
104 apply (le_S_S ? ? H).
107 theorem leS_to_not_zero : \forall n,m:nat. S n \leq m \to not_zero m.
108 intros.elim H.exact I.exact I.
112 theorem not_le_Sn_O: \forall n:nat. S n \nleq O.
113 intros.unfold Not.simplify.intros.apply (leS_to_not_zero ? ? H).
116 theorem not_le_Sn_n: \forall n:nat. S n \nleq n.
117 intros.elim n.apply not_le_Sn_O.unfold Not.simplify.intros.cut (S n1 \leq n1).
119 apply le_S_S_to_le.assumption.
122 theorem lt_pred: \forall n,m.
123 O < n \to n < m \to pred n < pred m.
125 [intros.apply False_ind.apply (not_le_Sn_O ? H)
126 |intros.apply False_ind.apply (not_le_Sn_O ? H1)
127 |intros.simplify.unfold.apply le_S_S_to_le.assumption
131 theorem S_pred: \forall n:nat.lt O n \to eq nat n (S (pred n)).
132 intro.elim n.apply False_ind.exact (not_le_Sn_O O H).
133 apply eq_f.apply pred_Sn.
136 theorem le_pred_to_le:
137 ∀n,m. O < m → pred n ≤ pred m → n ≤ m.
142 rewrite > (S_pred m);
150 theorem le_to_le_pred:
151 ∀n,m. n ≤ m → pred n ≤ pred m.
158 [ elim (not_le_Sn_O ? H1)
167 theorem le_to_or_lt_eq : \forall n,m:nat.
168 n \leq m \to n < m \lor n = m.
171 left.unfold lt.apply le_S_S.assumption.
174 theorem Not_lt_n_n: ∀n. n ≮ n.
179 apply (not_le_Sn_n ? H).
183 theorem lt_to_not_eq : \forall n,m:nat. n<m \to n \neq m.
184 unfold Not.intros.cut ((le (S n) m) \to False).
185 apply Hcut.assumption.rewrite < H1.
190 theorem eq_to_not_lt: \forall a,b:nat.
196 apply (lt_to_not_eq b b)
202 theorem lt_n_m_to_not_lt_m_Sn: ∀n,m. n < m → m ≮ S n.
208 generalize in match (le_S_S ? ? H);
210 generalize in match (transitive_le ? ? ? H2 H1);
212 apply (not_le_Sn_n ? H3).
216 theorem lt_to_le : \forall n,m:nat. n<m \to n \leq m.
217 simplify.intros.unfold lt in H.elim H.
218 apply le_S. apply le_n.
219 apply le_S. assumption.
222 theorem lt_S_to_le : \forall n,m:nat. n < S m \to n \leq m.
224 apply le_S_S_to_le.assumption.
227 theorem not_le_to_lt: \forall n,m:nat. n \nleq m \to m<n.
229 apply (nat_elim2 (\lambda n,m.n \nleq m \to m<n)).
230 intros.apply (absurd (O \leq n1)).apply le_O_n.assumption.
231 unfold Not.unfold lt.intros.apply le_S_S.apply le_O_n.
232 unfold Not.unfold lt.intros.apply le_S_S.apply H.intros.apply H1.apply le_S_S.
236 theorem lt_to_not_le: \forall n,m:nat. n<m \to m \nleq n.
237 unfold Not.unfold lt.intros 3.elim H.
238 apply (not_le_Sn_n n H1).
239 apply H2.apply lt_to_le. apply H3.
242 theorem not_lt_to_le: \forall n,m:nat. Not (lt n m) \to le m n.
245 apply not_le_to_lt.exact H.
248 theorem le_to_not_lt: \forall n,m:nat. le n m \to Not (lt m n).
249 intros.unfold Not.unfold lt.
250 apply lt_to_not_le.unfold lt.
251 apply le_S_S.assumption.
254 theorem not_eq_to_le_to_lt: ∀n,m. n≠m → n≤m → n<m.
256 elim (le_to_or_lt_eq ? ? H1);
263 theorem le_n_O_to_eq : \forall n:nat. n \leq O \to O=n.
264 intro.elim n.reflexivity.
267 [2: apply H1 | skip].
270 theorem le_n_O_elim: \forall n:nat.n \leq O \to \forall P: nat \to Prop.
275 apply (not_le_Sn_O ? H1).
278 theorem le_n_Sm_elim : \forall n,m:nat.n \leq S m \to
279 \forall P:Prop. (S n \leq S m \to P) \to (n=S m \to P) \to P.
281 apply H2.reflexivity.
282 apply H3. apply le_S_S. assumption.
286 lemma le_to_le_to_eq: \forall n,m. n \le m \to m \le n \to n = m.
288 [intros.apply le_n_O_to_eq.assumption
289 |intros.apply sym_eq.apply le_n_O_to_eq.assumption
290 |intros.apply eq_f.apply H
291 [apply le_S_S_to_le.assumption
292 |apply le_S_S_to_le.assumption
297 (* lt and le trans *)
298 theorem lt_O_S : \forall n:nat. O < S n.
299 intro. unfold. apply le_S_S. apply le_O_n.
302 theorem lt_to_le_to_lt: \forall n,m,p:nat. lt n m \to le m p \to lt n p.
304 assumption.unfold lt.apply le_S.assumption.
307 theorem le_to_lt_to_lt: \forall n,m,p:nat. le n m \to lt m p \to lt n p.
309 assumption.apply H2.unfold lt.
310 apply lt_to_le.assumption.
313 theorem lt_S_to_lt: \forall n,m. S n < m \to n < m.
315 apply (trans_lt ? (S n))
316 [apply le_n|assumption]
319 theorem ltn_to_ltO: \forall n,m:nat. lt n m \to lt O m.
320 intros.apply (le_to_lt_to_lt O n).
321 apply le_O_n.assumption.
324 theorem lt_SO_n_to_lt_O_pred_n: \forall n:nat.
325 (S O) \lt n \to O \lt (pred n).
327 apply (ltn_to_ltO (pred (S O)) (pred n) ?).
328 apply (lt_pred (S O) n);
334 theorem lt_O_n_elim: \forall n:nat. lt O n \to
335 \forall P:nat\to Prop. (\forall m:nat.P (S m)) \to P n.
336 intro.elim n.apply False_ind.exact (not_le_Sn_O O H).
340 (* other abstract properties *)
341 theorem antisymmetric_le : antisymmetric nat le.
342 unfold antisymmetric.intros 2.
343 apply (nat_elim2 (\lambda n,m.(n \leq m \to m \leq n \to n=m))).
344 intros.apply le_n_O_to_eq.assumption.
345 intros.apply False_ind.apply (not_le_Sn_O ? H).
346 intros.apply eq_f.apply H.
347 apply le_S_S_to_le.assumption.
348 apply le_S_S_to_le.assumption.
351 theorem antisym_le: \forall n,m:nat. n \leq m \to m \leq n \to n=m
352 \def antisymmetric_le.
354 theorem le_n_m_to_lt_m_Sn_to_eq_n_m: ∀n,m. n ≤ m → m < S n → n=m.
357 generalize in match (le_S_S_to_le ? ? H1);
363 theorem decidable_le: \forall n,m:nat. decidable (n \leq m).
365 apply (nat_elim2 (\lambda n,m.decidable (n \leq m))).
366 intros.unfold decidable.left.apply le_O_n.
367 intros.unfold decidable.right.exact (not_le_Sn_O n1).
368 intros 2.unfold decidable.intro.elim H.
369 left.apply le_S_S.assumption.
370 right.unfold Not.intro.apply H1.apply le_S_S_to_le.assumption.
373 theorem decidable_lt: \forall n,m:nat. decidable (n < m).
374 intros.exact (decidable_le (S n) m).
377 (* well founded induction principles *)
379 theorem nat_elim1 : \forall n:nat.\forall P:nat \to Prop.
380 (\forall m.(\forall p. (p \lt m) \to P p) \to P m) \to P n.
381 intros.cut (\forall q:nat. q \le n \to P q).
382 apply (Hcut n).apply le_n.
383 elim n.apply (le_n_O_elim q H1).
385 intros.apply False_ind.apply (not_le_Sn_O p H2).
386 apply H.intros.apply H1.
388 apply lt_S_to_le.assumption.
389 apply (lt_to_le_to_lt p q (S n1) H3 H2).
392 (* some properties of functions *)
394 definition increasing \def \lambda f:nat \to nat.
395 \forall n:nat. f n < f (S n).
397 theorem increasing_to_monotonic: \forall f:nat \to nat.
398 increasing f \to monotonic nat lt f.
399 unfold monotonic.unfold lt.unfold increasing.unfold lt.intros.elim H1.apply H.
400 apply (trans_le ? (f n1)).
401 assumption.apply (trans_le ? (S (f n1))).
406 theorem le_n_fn: \forall f:nat \to nat. (increasing f)
407 \to \forall n:nat. n \le (f n).
410 apply (trans_le ? (S (f n1))).
411 apply le_S_S.apply H1.
412 simplify in H. unfold increasing in H.unfold lt in H.apply H.
415 theorem increasing_to_le: \forall f:nat \to nat. (increasing f)
416 \to \forall m:nat. \exists i. m \le (f i).
418 apply (ex_intro ? ? O).apply le_O_n.
420 apply (ex_intro ? ? (S a)).
421 apply (trans_le ? (S (f a))).
422 apply le_S_S.assumption.
423 simplify in H.unfold increasing in H.unfold lt in H.
427 theorem increasing_to_le2: \forall f:nat \to nat. (increasing f)
428 \to \forall m:nat. (f O) \le m \to
429 \exists i. (f i) \le m \land m <(f (S i)).
431 apply (ex_intro ? ? O).
432 split.apply le_n.apply H.
434 cut ((S n1) < (f (S a)) \lor (S n1) = (f (S a))).
436 apply (ex_intro ? ? a).
437 split.apply le_S. assumption.assumption.
438 apply (ex_intro ? ? (S a)).
439 split.rewrite < H7.apply le_n.
442 apply le_to_or_lt_eq.apply H6.