1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
16 include "higher_order_defs/ordering.ma".
19 inductive le (n:nat) : nat \to Prop \def
21 | le_S : \forall m:nat. le n m \to le n (S m).
23 interpretation "natural 'less or equal to'" 'leq x y = (le x y).
25 interpretation "natural 'neither less nor equal to'" 'nleq x y = (Not (le x y)).
27 definition lt: nat \to nat \to Prop \def
28 \lambda n,m:nat.(S n) \leq m.
30 interpretation "natural 'less than'" 'lt x y = (lt x y).
32 interpretation "natural 'not less than'" 'nless x y = (Not (lt x y)).
34 definition ge: nat \to nat \to Prop \def
35 \lambda n,m:nat.m \leq n.
37 interpretation "natural 'greater or equal to'" 'geq x y = (ge x y).
39 definition gt: nat \to nat \to Prop \def
42 interpretation "natural 'greater than'" 'gt x y = (gt x y).
44 interpretation "natural 'not greater than'" 'ngtr x y = (Not (gt x y)).
46 theorem transitive_le : transitive nat le.
47 unfold transitive.intros.elim H1.
49 apply le_S.assumption.
52 theorem trans_le: \forall n,m,p:nat. n \leq m \to m \leq p \to n \leq p
55 theorem transitive_lt: transitive nat lt.
56 unfold transitive.unfold lt.intros.elim H1.
57 apply le_S. assumption.
58 apply le_S.assumption.
61 theorem trans_lt: \forall n,m,p:nat. lt n m \to lt m p \to lt n p
64 theorem le_S_S: \forall n,m:nat. n \leq m \to S n \leq S m.
67 apply le_S.assumption.
70 theorem le_O_n : \forall n:nat. O \leq n.
76 theorem le_n_Sn : \forall n:nat. n \leq S n.
77 intros. apply le_S.apply le_n.
80 theorem le_pred_n : \forall n:nat. pred n \leq n.
83 simplify.apply le_n_Sn.
86 theorem le_S_S_to_le : \forall n,m:nat. S n \leq S m \to n \leq m.
87 intros.change with (pred (S n) \leq pred (S m)).
88 elim H.apply le_n.apply (trans_le ? (pred n1)).assumption.
92 theorem lt_S_S_to_lt: \forall n,m.
94 intros. apply le_S_S_to_le. assumption.
97 theorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m.
100 apply (le_S_S ? ? H).
103 theorem leS_to_not_zero : \forall n,m:nat. S n \leq m \to not_zero m.
104 intros.elim H.exact I.exact I.
108 theorem not_le_Sn_O: \forall n:nat. S n \nleq O.
109 intros.unfold Not.simplify.intros.apply (leS_to_not_zero ? ? H).
112 theorem not_le_Sn_n: \forall n:nat. S n \nleq n.
113 intros.elim n.apply not_le_Sn_O.unfold Not.simplify.intros.cut (S n1 \leq n1).
115 apply le_S_S_to_le.assumption.
118 theorem lt_pred: \forall n,m.
119 O < n \to n < m \to pred n < pred m.
121 [intros.apply False_ind.apply (not_le_Sn_O ? H)
122 |intros.apply False_ind.apply (not_le_Sn_O ? H1)
123 |intros.simplify.unfold.apply le_S_S_to_le.assumption
127 theorem S_pred: \forall n:nat.lt O n \to eq nat n (S (pred n)).
128 intro.elim n.apply False_ind.exact (not_le_Sn_O O H).
129 apply eq_f.apply pred_Sn.
132 theorem le_pred_to_le:
133 ∀n,m. O < m → pred n ≤ pred m → n ≤ m.
138 rewrite > (S_pred m);
146 theorem le_to_le_pred:
147 ∀n,m. n ≤ m → pred n ≤ pred m.
154 [ elim (not_le_Sn_O ? H1)
163 theorem le_to_or_lt_eq : \forall n,m:nat.
164 n \leq m \to n < m \lor n = m.
167 left.unfold lt.apply le_S_S.assumption.
170 theorem Not_lt_n_n: ∀n. n ≮ n.
175 apply (not_le_Sn_n ? H).
179 theorem lt_to_not_eq : \forall n,m:nat. n<m \to n \neq m.
180 unfold Not.intros.cut ((le (S n) m) \to False).
181 apply Hcut.assumption.rewrite < H1.
186 theorem eq_to_not_lt: \forall a,b:nat.
192 apply (lt_to_not_eq b b)
198 theorem lt_n_m_to_not_lt_m_Sn: ∀n,m. n < m → m ≮ S n.
204 generalize in match (le_S_S ? ? H);
206 generalize in match (transitive_le ? ? ? H2 H1);
208 apply (not_le_Sn_n ? H3).
212 theorem lt_to_le : \forall n,m:nat. n<m \to n \leq m.
213 simplify.intros.unfold lt in H.elim H.
214 apply le_S. apply le_n.
215 apply le_S. assumption.
218 theorem lt_S_to_le : \forall n,m:nat. n < S m \to n \leq m.
220 apply le_S_S_to_le.assumption.
223 theorem not_le_to_lt: \forall n,m:nat. n \nleq m \to m<n.
225 apply (nat_elim2 (\lambda n,m.n \nleq m \to m<n)).
226 intros.apply (absurd (O \leq n1)).apply le_O_n.assumption.
227 unfold Not.unfold lt.intros.apply le_S_S.apply le_O_n.
228 unfold Not.unfold lt.intros.apply le_S_S.apply H.intros.apply H1.apply le_S_S.
232 theorem lt_to_not_le: \forall n,m:nat. n<m \to m \nleq n.
233 unfold Not.unfold lt.intros 3.elim H.
234 apply (not_le_Sn_n n H1).
235 apply H2.apply lt_to_le. apply H3.
238 theorem not_lt_to_le: \forall n,m:nat. Not (lt n m) \to le m n.
241 apply not_le_to_lt.exact H.
244 theorem le_to_not_lt: \forall n,m:nat. le n m \to Not (lt m n).
245 intros.unfold Not.unfold lt.
246 apply lt_to_not_le.unfold lt.
247 apply le_S_S.assumption.
250 theorem not_eq_to_le_to_lt: ∀n,m. n≠m → n≤m → n<m.
252 elim (le_to_or_lt_eq ? ? H1);
259 theorem le_n_O_to_eq : \forall n:nat. n \leq O \to O=n.
260 intro.elim n.reflexivity.
263 [2: apply H1 | skip].
266 theorem le_n_O_elim: \forall n:nat.n \leq O \to \forall P: nat \to Prop.
271 apply (not_le_Sn_O ? H1).
274 theorem le_n_Sm_elim : \forall n,m:nat.n \leq S m \to
275 \forall P:Prop. (S n \leq S m \to P) \to (n=S m \to P) \to P.
277 apply H2.reflexivity.
278 apply H3. apply le_S_S. assumption.
282 lemma le_to_le_to_eq: \forall n,m. n \le m \to m \le n \to n = m.
284 [intros.apply le_n_O_to_eq.assumption
285 |intros.apply sym_eq.apply le_n_O_to_eq.assumption
286 |intros.apply eq_f.apply H
287 [apply le_S_S_to_le.assumption
288 |apply le_S_S_to_le.assumption
293 (* lt and le trans *)
294 theorem lt_O_S : \forall n:nat. O < S n.
295 intro. unfold. apply le_S_S. apply le_O_n.
298 theorem lt_to_le_to_lt: \forall n,m,p:nat. lt n m \to le m p \to lt n p.
300 assumption.unfold lt.apply le_S.assumption.
303 theorem le_to_lt_to_lt: \forall n,m,p:nat. le n m \to lt m p \to lt n p.
305 assumption.apply H2.unfold lt.
306 apply lt_to_le.assumption.
309 theorem lt_S_to_lt: \forall n,m. S n < m \to n < m.
311 apply (trans_lt ? (S n))
312 [apply le_n|assumption]
315 theorem ltn_to_ltO: \forall n,m:nat. lt n m \to lt O m.
316 intros.apply (le_to_lt_to_lt O n).
317 apply le_O_n.assumption.
320 theorem lt_SO_n_to_lt_O_pred_n: \forall n:nat.
321 (S O) \lt n \to O \lt (pred n).
323 apply (ltn_to_ltO (pred (S O)) (pred n) ?).
324 apply (lt_pred (S O) n);
330 theorem lt_O_n_elim: \forall n:nat. lt O n \to
331 \forall P:nat\to Prop. (\forall m:nat.P (S m)) \to P n.
332 intro.elim n.apply False_ind.exact (not_le_Sn_O O H).
336 (* other abstract properties *)
337 theorem antisymmetric_le : antisymmetric nat le.
338 unfold antisymmetric.intros 2.
339 apply (nat_elim2 (\lambda n,m.(n \leq m \to m \leq n \to n=m))).
340 intros.apply le_n_O_to_eq.assumption.
341 intros.apply False_ind.apply (not_le_Sn_O ? H).
342 intros.apply eq_f.apply H.
343 apply le_S_S_to_le.assumption.
344 apply le_S_S_to_le.assumption.
347 theorem antisym_le: \forall n,m:nat. n \leq m \to m \leq n \to n=m
348 \def antisymmetric_le.
350 theorem le_n_m_to_lt_m_Sn_to_eq_n_m: ∀n,m. n ≤ m → m < S n → n=m.
353 generalize in match (le_S_S_to_le ? ? H1);
359 theorem decidable_le: \forall n,m:nat. decidable (n \leq m).
361 apply (nat_elim2 (\lambda n,m.decidable (n \leq m))).
362 intros.unfold decidable.left.apply le_O_n.
363 intros.unfold decidable.right.exact (not_le_Sn_O n1).
364 intros 2.unfold decidable.intro.elim H.
365 left.apply le_S_S.assumption.
366 right.unfold Not.intro.apply H1.apply le_S_S_to_le.assumption.
369 theorem decidable_lt: \forall n,m:nat. decidable (n < m).
370 intros.exact (decidable_le (S n) m).
373 (* well founded induction principles *)
375 theorem nat_elim1 : \forall n:nat.\forall P:nat \to Prop.
376 (\forall m.(\forall p. (p \lt m) \to P p) \to P m) \to P n.
377 intros.cut (\forall q:nat. q \le n \to P q).
378 apply (Hcut n).apply le_n.
379 elim n.apply (le_n_O_elim q H1).
381 intros.apply False_ind.apply (not_le_Sn_O p H2).
382 apply H.intros.apply H1.
384 apply lt_S_to_le.assumption.
385 apply (lt_to_le_to_lt p q (S n1) H3 H2).
388 (* some properties of functions *)
390 definition increasing \def \lambda f:nat \to nat.
391 \forall n:nat. f n < f (S n).
393 theorem increasing_to_monotonic: \forall f:nat \to nat.
394 increasing f \to monotonic nat lt f.
395 unfold monotonic.unfold lt.unfold increasing.unfold lt.intros.elim H1.apply H.
396 apply (trans_le ? (f n1)).
397 assumption.apply (trans_le ? (S (f n1))).
402 theorem le_n_fn: \forall f:nat \to nat. (increasing f)
403 \to \forall n:nat. n \le (f n).
406 apply (trans_le ? (S (f n1))).
407 apply le_S_S.apply H1.
408 simplify in H. unfold increasing in H.unfold lt in H.apply H.
411 theorem increasing_to_le: \forall f:nat \to nat. (increasing f)
412 \to \forall m:nat. \exists i. m \le (f i).
414 apply (ex_intro ? ? O).apply le_O_n.
416 apply (ex_intro ? ? (S a)).
417 apply (trans_le ? (S (f a))).
418 apply le_S_S.assumption.
419 simplify in H.unfold increasing in H.unfold lt in H.
423 theorem increasing_to_le2: \forall f:nat \to nat. (increasing f)
424 \to \forall m:nat. (f O) \le m \to
425 \exists i. (f i) \le m \land m <(f (S i)).
427 apply (ex_intro ? ? O).
428 split.apply le_n.apply H.
430 cut ((S n1) < (f (S a)) \lor (S n1) = (f (S a))).
432 apply (ex_intro ? ? a).
433 split.apply le_S. assumption.assumption.
434 apply (ex_intro ? ? (S a)).
435 split.rewrite < H7.apply le_n.
438 apply le_to_or_lt_eq.apply H6.