]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/library/nat/plus.ma
- transcript: we have now two styles of mma's from grafite:
[helm.git] / helm / software / matita / library / nat / plus.ma
1 (**************************************************************************)
2 (*       ___                                                                *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
8 (*      ||A||       E.Tassi, S.Zacchiroli                                 *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU Lesser General Public License Version 2.1         *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "nat/nat.ma".
16
17 let rec plus n m \def 
18  match n with 
19  [ O \Rightarrow m
20  | (S p) \Rightarrow S (plus p m) ].
21
22 interpretation "natural plus" 'plus x y = (plus x y).
23
24 theorem plus_n_O: \forall n:nat. n = n+O.
25 intros.elim n.
26 simplify.reflexivity.
27 simplify.apply eq_f.assumption.
28 qed.
29
30 theorem plus_n_Sm : \forall n,m:nat. S (n+m) = n+(S m).
31 intros.elim n.
32 simplify.reflexivity.
33 simplify.apply eq_f.assumption.
34 qed.
35
36 theorem plus_n_SO : \forall n:nat. S n = n+(S O).
37 intro.rewrite > plus_n_O.
38 apply plus_n_Sm.
39 qed.
40
41 theorem sym_plus: \forall n,m:nat. n+m = m+n.
42 intros.elim n.
43 simplify.apply plus_n_O.
44 simplify.rewrite > H.apply plus_n_Sm.
45 qed.
46
47 theorem associative_plus : associative nat plus.
48 unfold associative.intros.elim x.
49 simplify.reflexivity.
50 simplify.apply eq_f.assumption.
51 qed.
52
53 theorem assoc_plus : \forall n,m,p:nat. (n+m)+p = n+(m+p)
54 \def associative_plus.
55
56 theorem injective_plus_r: \forall n:nat.injective nat nat (\lambda m.n+m).
57 intro.simplify.intros 2.elim n.
58 exact H.
59 apply H.apply inj_S.apply H1.
60 qed.
61
62 theorem inj_plus_r: \forall p,n,m:nat. p+n = p+m \to n=m
63 \def injective_plus_r.
64
65 theorem injective_plus_l: \forall m:nat.injective nat nat (\lambda n.n+m).
66 intro.simplify.intros.
67 apply (injective_plus_r m).
68 rewrite < sym_plus.
69 rewrite < (sym_plus y).
70 assumption.
71 qed.
72
73 theorem inj_plus_l: \forall p,n,m:nat. n+p = m+p \to n=m
74 \def injective_plus_l.