1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / Matita is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 include "nat/div_and_mod.ma".
16 include "nat/minimization.ma".
17 include "nat/sigma_and_pi.ma".
18 include "nat/factorial.ma".
20 inductive divides (n,m:nat) : Prop \def
21 witness : \forall p:nat.m = times n p \to divides n m.
23 interpretation "divides" 'divides n m = (divides n m).
24 interpretation "not divides" 'ndivides n m = (Not (divides n m)).
26 theorem reflexive_divides : reflexive nat divides.
29 exact (witness x x (S O) (times_n_SO x)).
32 theorem divides_to_div_mod_spec :
33 \forall n,m. O < n \to n \divides m \to div_mod_spec m n (m / n) O.
34 intros.elim H1.rewrite > H2.
35 constructor 1.assumption.
36 apply (lt_O_n_elim n H).intros.
38 rewrite > div_times.apply sym_times.
41 theorem div_mod_spec_to_divides :
42 \forall n,m,p. div_mod_spec m n p O \to n \divides m.
44 apply (witness n m p).
46 rewrite > (plus_n_O (p*n)).assumption.
49 theorem divides_to_mod_O:
50 \forall n,m. O < n \to n \divides m \to (m \mod n) = O.
51 intros.apply (div_mod_spec_to_eq2 m n (m / n) (m \mod n) (m / n) O).
52 apply div_mod_spec_div_mod.assumption.
53 apply divides_to_div_mod_spec.assumption.assumption.
56 theorem mod_O_to_divides:
57 \forall n,m. O< n \to (m \mod n) = O \to n \divides m.
59 apply (witness n m (m / n)).
60 rewrite > (plus_n_O (n * (m / n))).
63 (* Andrea: perche' hint non lo trova ?*)
68 theorem divides_n_O: \forall n:nat. n \divides O.
69 intro. apply (witness n O O).apply times_n_O.
72 theorem divides_n_n: \forall n:nat. n \divides n.
73 intro. apply (witness n n (S O)).apply times_n_SO.
76 theorem divides_SO_n: \forall n:nat. (S O) \divides n.
77 intro. apply (witness (S O) n n). simplify.apply plus_n_O.
80 theorem divides_plus: \forall n,p,q:nat.
81 n \divides p \to n \divides q \to n \divides p+q.
83 elim H.elim H1. apply (witness n (p+q) (n1+n2)).
84 rewrite > H2.rewrite > H3.apply sym_eq.apply distr_times_plus.
87 theorem divides_minus: \forall n,p,q:nat.
88 divides n p \to divides n q \to divides n (p-q).
90 elim H.elim H1. apply (witness n (p-q) (n1-n2)).
91 rewrite > H2.rewrite > H3.apply sym_eq.apply distr_times_minus.
94 theorem divides_times: \forall n,m,p,q:nat.
95 n \divides p \to m \divides q \to n*m \divides p*q.
97 elim H.elim H1. apply (witness (n*m) (p*q) (n1*n2)).
98 rewrite > H2.rewrite > H3.
99 apply (trans_eq nat ? (n*(m*(n1*n2)))).
100 apply (trans_eq nat ? (n*(n1*(m*n2)))).
103 apply (trans_eq nat ? ((n1*m)*n2)).
104 apply sym_eq. apply assoc_times.
105 rewrite > (sym_times n1 m).apply assoc_times.
106 apply sym_eq. apply assoc_times.
109 theorem transitive_divides: transitive ? divides.
112 elim H.elim H1. apply (witness x z (n1*n)).
113 rewrite > H3.rewrite > H2.
117 variant trans_divides: \forall n,m,p.
118 n \divides m \to m \divides p \to n \divides p \def transitive_divides.
120 theorem eq_mod_to_divides:\forall n,m,p. O< p \to
121 mod n p = mod m p \to divides p (n-m).
123 cut (n \le m \or \not n \le m).
127 apply (witness p O O).
129 apply eq_minus_n_m_O.
131 apply (witness p (n-m) ((div n p)-(div m p))).
132 rewrite > distr_times_minus.
134 rewrite > (sym_times p).
135 cut ((div n p)*p = n - (mod n p)).
137 rewrite > eq_minus_minus_minus_plus.
140 rewrite < div_mod.reflexivity.
147 apply (decidable_le n m).
150 theorem antisymmetric_divides: antisymmetric nat divides.
151 unfold antisymmetric.intros.elim H. elim H1.
152 apply (nat_case1 n1).intro.
153 rewrite > H3.rewrite > H2.rewrite > H4.
154 rewrite < times_n_O.reflexivity.
156 apply (nat_case1 n).intro.
157 rewrite > H2.rewrite > H3.rewrite > H5.
158 rewrite < times_n_O.reflexivity.
160 apply antisymmetric_le.
161 rewrite > H2.rewrite > times_n_SO in \vdash (? % ?).
162 apply le_times_r.rewrite > H4.apply le_S_S.apply le_O_n.
163 rewrite > H3.rewrite > times_n_SO in \vdash (? % ?).
164 apply le_times_r.rewrite > H5.apply le_S_S.apply le_O_n.
168 theorem divides_to_le : \forall n,m. O < m \to n \divides m \to n \le m.
169 intros. elim H1.rewrite > H2.cut (O < n1).
170 apply (lt_O_n_elim n1 Hcut).intro.rewrite < sym_times.
171 simplify.rewrite < sym_plus.
173 elim (le_to_or_lt_eq O n1).
175 absurd (O<m).assumption.
176 rewrite > H2.rewrite < H3.rewrite < times_n_O.
177 apply (not_le_Sn_n O).
181 theorem divides_to_lt_O : \forall n,m. O < m \to n \divides m \to O < n.
183 elim (le_to_or_lt_eq O n (le_O_n n)).
185 rewrite < H3.absurd (O < m).assumption.
186 rewrite > H2.rewrite < H3.
187 simplify.exact (not_le_Sn_n O).
190 (*a variant of or_div_mod *)
191 theorem or_div_mod1: \forall n,q. O < q \to
192 (divides q (S n)) \land S n = (S (div n q)) * q \lor
193 (\lnot (divides q (S n)) \land S n= (div n q) * q + S (n\mod q)).
194 intros.elim (or_div_mod n q H);elim H1
196 [apply (witness ? ? (S (n/q))).
197 rewrite > sym_times.assumption
202 apply (not_eq_O_S (n \mod q)).
203 (* come faccio a fare unfold nelleipotesi ? *)
204 cut ((S n) \mod q = O)
206 apply (div_mod_spec_to_eq2 (S n) q (div (S n) q) (mod (S n) q) (div n q) (S (mod n q)))
207 [apply div_mod_spec_div_mod.
209 |apply div_mod_spec_intro;assumption
211 |apply divides_to_mod_O;assumption
218 theorem divides_to_div: \forall n,m.divides n m \to m/n*n = m.
220 elim (le_to_or_lt_eq O n (le_O_n n))
222 rewrite < (divides_to_mod_O ? ? H H1).
227 generalize in match H2.
236 theorem divides_div: \forall d,n. divides d n \to divides (n/d) n.
238 apply (witness ? ? d).
240 apply divides_to_div.
244 theorem div_div: \forall n,d:nat. O < n \to divides d n \to
247 apply (inj_times_l1 (n/d))
248 [apply (lt_times_n_to_lt d)
249 [apply (divides_to_lt_O ? ? H H1).
250 |rewrite > divides_to_div;assumption
252 |rewrite > divides_to_div
253 [rewrite > sym_times.
254 rewrite > divides_to_div
258 |apply (witness ? ? d).
260 apply divides_to_div.
266 theorem divides_to_eq_times_div_div_times: \forall a,b,c:nat.
267 O \lt b \to c \divides b \to a * (b /c) = (a*b)/c.
271 rewrite > (sym_times c n1).
273 [ rewrite > (lt_O_to_div_times n1 c)
274 [ rewrite < assoc_times.
275 rewrite > (lt_O_to_div_times (a *n1) c)
281 | apply (divides_to_lt_O c b);
286 theorem eq_div_plus: \forall n,m,d. O < d \to
287 divides d n \to divides d m \to
288 (n + m ) / d = n/d + m/d.
292 rewrite > H3.rewrite > H4.
293 rewrite < distr_times_plus.
295 rewrite > sym_times in ⊢ (? ? ? (? (? % ?) ?)).
296 rewrite > sym_times in ⊢ (? ? ? (? ? (? % ?))).
297 rewrite > lt_O_to_div_times
298 [rewrite > lt_O_to_div_times
299 [rewrite > lt_O_to_div_times
309 (* boolean divides *)
310 definition divides_b : nat \to nat \to bool \def
311 \lambda n,m :nat. (eqb (m \mod n) O).
313 theorem divides_b_to_Prop :
314 \forall n,m:nat. O < n \to
315 match divides_b n m with
316 [ true \Rightarrow n \divides m
317 | false \Rightarrow n \ndivides m].
318 intros.unfold divides_b.
320 intro.simplify.apply mod_O_to_divides.assumption.assumption.
321 intro.simplify.unfold Not.intro.apply H1.apply divides_to_mod_O.assumption.assumption.
324 theorem divides_b_true_to_divides1:
325 \forall n,m:nat. O < n \to
326 (divides_b n m = true ) \to n \divides m.
330 [ true \Rightarrow n \divides m
331 | false \Rightarrow n \ndivides m].
332 rewrite < H1.apply divides_b_to_Prop.
336 theorem divides_b_true_to_divides:
337 \forall n,m:nat. divides_b n m = true \to n \divides m.
338 intros 2.apply (nat_case n)
340 [intro.apply divides_n_n
341 |simplify.intros.apply False_ind.
342 apply not_eq_true_false.apply sym_eq.
346 apply divides_b_true_to_divides1
347 [apply lt_O_S|assumption]
351 theorem divides_b_false_to_not_divides1:
352 \forall n,m:nat. O < n \to
353 (divides_b n m = false ) \to n \ndivides m.
357 [ true \Rightarrow n \divides m
358 | false \Rightarrow n \ndivides m].
359 rewrite < H1.apply divides_b_to_Prop.
363 theorem divides_b_false_to_not_divides:
364 \forall n,m:nat. divides_b n m = false \to n \ndivides m.
365 intros 2.apply (nat_case n)
367 [simplify.unfold Not.intros.
368 apply not_eq_true_false.assumption
369 |unfold Not.intros.elim H1.
370 apply (not_eq_O_S m1).apply sym_eq.
374 apply divides_b_false_to_not_divides1
375 [apply lt_O_S|assumption]
379 theorem decidable_divides: \forall n,m:nat.O < n \to
380 decidable (n \divides m).
381 intros.unfold decidable.
383 (match divides_b n m with
384 [ true \Rightarrow n \divides m
385 | false \Rightarrow n \ndivides m] \to n \divides m \lor n \ndivides m).
386 apply Hcut.apply divides_b_to_Prop.assumption.
387 elim (divides_b n m).left.apply H1.right.apply H1.
390 theorem divides_to_divides_b_true : \forall n,m:nat. O < n \to
391 n \divides m \to divides_b n m = true.
393 cut (match (divides_b n m) with
394 [ true \Rightarrow n \divides m
395 | false \Rightarrow n \ndivides m] \to ((divides_b n m) = true)).
396 apply Hcut.apply divides_b_to_Prop.assumption.
397 elim (divides_b n m).reflexivity.
398 absurd (n \divides m).assumption.assumption.
401 theorem divides_to_divides_b_true1 : \forall n,m:nat.
402 O < m \to n \divides m \to divides_b n m = true.
404 elim (le_to_or_lt_eq O n (le_O_n n))
405 [apply divides_to_divides_b_true
406 [assumption|assumption]
411 apply (not_le_Sn_O O).
417 theorem not_divides_to_divides_b_false: \forall n,m:nat. O < n \to
418 \lnot(n \divides m) \to (divides_b n m) = false.
420 cut (match (divides_b n m) with
421 [ true \Rightarrow n \divides m
422 | false \Rightarrow n \ndivides m] \to ((divides_b n m) = false)).
423 apply Hcut.apply divides_b_to_Prop.assumption.
424 elim (divides_b n m).
425 absurd (n \divides m).assumption.assumption.
429 theorem divides_b_div_true:
430 \forall d,n. O < n \to
431 divides_b d n = true \to divides_b (n/d) n = true.
433 apply divides_to_divides_b_true1
436 apply divides_b_true_to_divides.
441 theorem divides_b_true_to_lt_O: \forall n,m. O < n \to divides_b m n = true \to O < m.
443 elim (le_to_or_lt_eq ? ? (le_O_n m))
449 apply (lt_to_not_eq O n H).
451 apply eqb_true_to_eq.
457 theorem divides_f_pi_f : \forall f:nat \to nat.\forall n,m,i:nat.
458 m \le i \to i \le n+m \to f i \divides pi n f m.
459 intros 5.elim n.simplify.
460 cut (i = m).rewrite < Hcut.apply divides_n_n.
461 apply antisymmetric_le.assumption.assumption.
463 cut (i < S n1+m \lor i = S n1 + m).
465 apply (transitive_divides ? (pi n1 f m)).
466 apply H1.apply le_S_S_to_le. assumption.
467 apply (witness ? ? (f (S n1+m))).apply sym_times.
469 apply (witness ? ? (pi n1 f m)).reflexivity.
470 apply le_to_or_lt_eq.assumption.
474 theorem mod_S_pi: \forall f:nat \to nat.\forall n,i:nat.
475 i < n \to (S O) < (f i) \to (S (pi n f)) \mod (f i) = (S O).
476 intros.cut (pi n f) \mod (f i) = O.
478 apply mod_S.apply trans_lt O (S O).apply le_n (S O).assumption.
479 rewrite > Hcut.assumption.
480 apply divides_to_mod_O.apply trans_lt O (S O).apply le_n (S O).assumption.
481 apply divides_f_pi_f.assumption.
485 (* divides and fact *)
486 theorem divides_fact : \forall n,i:nat.
487 O < i \to i \le n \to i \divides n!.
488 intros 3.elim n.absurd (O<i).assumption.apply (le_n_O_elim i H1).
489 apply (not_le_Sn_O O).
490 change with (i \divides (S n1)*n1!).
491 apply (le_n_Sm_elim i n1 H2).
493 apply (transitive_divides ? n1!).
494 apply H1.apply le_S_S_to_le. assumption.
495 apply (witness ? ? (S n1)).apply sym_times.
498 apply (witness ? ? n1!).reflexivity.
501 theorem mod_S_fact: \forall n,i:nat.
502 (S O) < i \to i \le n \to (S n!) \mod i = (S O).
503 intros.cut (n! \mod i = O).
505 apply mod_S.apply (trans_lt O (S O)).apply (le_n (S O)).assumption.
506 rewrite > Hcut.assumption.
507 apply divides_to_mod_O.apply (trans_lt O (S O)).apply (le_n (S O)).assumption.
508 apply divides_fact.apply (trans_lt O (S O)).apply (le_n (S O)).assumption.
512 theorem not_divides_S_fact: \forall n,i:nat.
513 (S O) < i \to i \le n \to i \ndivides S n!.
515 apply divides_b_false_to_not_divides.
517 rewrite > mod_S_fact[simplify.reflexivity|assumption|assumption].
521 definition prime : nat \to Prop \def
522 \lambda n:nat. (S O) < n \land
523 (\forall m:nat. m \divides n \to (S O) < m \to m = n).
525 theorem not_prime_O: \lnot (prime O).
526 unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_O (S O) H1).
529 theorem not_prime_SO: \lnot (prime (S O)).
530 unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_n (S O) H1).
533 theorem prime_to_lt_O: \forall p. prime p \to O < p.
534 intros.elim H.apply lt_to_le.assumption.
537 theorem prime_to_lt_SO: \forall p. prime p \to S O < p.
542 (* smallest factor *)
543 definition smallest_factor : nat \to nat \def
549 [ O \Rightarrow (S O)
550 | (S q) \Rightarrow min_aux q (S (S O)) (\lambda m.(eqb ((S(S q)) \mod m) O))]].
553 theorem example1 : smallest_factor (S(S(S O))) = (S(S(S O))).
554 normalize.reflexivity.
557 theorem example2: smallest_factor (S(S(S(S O)))) = (S(S O)).
558 normalize.reflexivity.
561 theorem example3 : smallest_factor (S(S(S(S(S(S(S O))))))) = (S(S(S(S(S(S(S O))))))).
562 simplify.reflexivity.
565 theorem lt_SO_smallest_factor:
566 \forall n:nat. (S O) < n \to (S O) < (smallest_factor n).
568 apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O (S O) H).
569 intro.apply (nat_case m).intro. apply False_ind.apply (not_le_Sn_n (S O) H).
572 (S O < min_aux m1 (S (S O)) (\lambda m.(eqb ((S(S m1)) \mod m) O))).
573 apply (lt_to_le_to_lt ? (S (S O))).
574 apply (le_n (S(S O))).
575 cut ((S(S O)) = (S(S m1)) - m1).
578 apply sym_eq.apply plus_to_minus.
579 rewrite < sym_plus.simplify.reflexivity.
582 theorem lt_O_smallest_factor: \forall n:nat. O < n \to O < (smallest_factor n).
584 apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_n O H).
585 intro.apply (nat_case m).intro.
586 simplify.unfold lt.apply le_n.
587 intros.apply (trans_lt ? (S O)).
588 unfold lt.apply le_n.
589 apply lt_SO_smallest_factor.unfold lt. apply le_S_S.
590 apply le_S_S.apply le_O_n.
593 theorem divides_smallest_factor_n :
594 \forall n:nat. O < n \to smallest_factor n \divides n.
596 apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O O H).
597 intro.apply (nat_case m).intro. simplify.
598 apply (witness ? ? (S O)). simplify.reflexivity.
600 apply divides_b_true_to_divides.
602 (eqb ((S(S m1)) \mod (min_aux m1 (S (S O))
603 (\lambda m.(eqb ((S(S m1)) \mod m) O)))) O = true).
604 apply f_min_aux_true.
605 apply (ex_intro nat ? (S(S m1))).
607 apply (le_S_S_to_le (S (S O)) (S (S m1)) ?).
608 apply (minus_le_O_to_le (S (S (S O))) (S (S (S m1))) ?).
610 rewrite < sym_plus. simplify. apply le_n.
611 apply (eq_to_eqb_true (mod (S (S m1)) (S (S m1))) O ?).
612 apply (mod_n_n (S (S m1)) ?).
616 theorem le_smallest_factor_n :
617 \forall n:nat. smallest_factor n \le n.
618 intro.apply (nat_case n).simplify.apply le_n.
619 intro.apply (nat_case m).simplify.apply le_n.
620 intro.apply divides_to_le.
621 unfold lt.apply le_S_S.apply le_O_n.
622 apply divides_smallest_factor_n.
623 unfold lt.apply le_S_S.apply le_O_n.
626 theorem lt_smallest_factor_to_not_divides: \forall n,i:nat.
627 (S O) < n \to (S O) < i \to i < (smallest_factor n) \to i \ndivides n.
629 apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O (S O) H).
630 intro.apply (nat_case m).intro. apply False_ind.apply (not_le_Sn_n (S O) H).
632 apply divides_b_false_to_not_divides.
633 apply (lt_min_aux_to_false
634 (\lambda i:nat.eqb ((S(S m1)) \mod i) O) (S (S O)) m1 i).
639 theorem prime_smallest_factor_n :
640 \forall n:nat. (S O) < n \to prime (smallest_factor n).
641 intro.change with ((S(S O)) \le n \to (S O) < (smallest_factor n) \land
642 (\forall m:nat. m \divides smallest_factor n \to (S O) < m \to m = (smallest_factor n))).
644 apply lt_SO_smallest_factor.assumption.
646 cut (le m (smallest_factor n)).
647 elim (le_to_or_lt_eq m (smallest_factor n) Hcut).
648 absurd (m \divides n).
649 apply (transitive_divides m (smallest_factor n)).
651 apply divides_smallest_factor_n.
652 apply (trans_lt ? (S O)). unfold lt. apply le_n. exact H.
653 apply lt_smallest_factor_to_not_divides.
654 exact H.assumption.assumption.assumption.
656 apply (trans_lt O (S O)).
658 apply lt_SO_smallest_factor.
663 theorem prime_to_smallest_factor: \forall n. prime n \to
664 smallest_factor n = n.
665 intro.apply (nat_case n).intro.apply False_ind.apply (not_prime_O H).
666 intro.apply (nat_case m).intro.apply False_ind.apply (not_prime_SO H).
669 ((S O) < (S(S m1)) \land
670 (\forall m:nat. m \divides S(S m1) \to (S O) < m \to m = (S(S m1))) \to
671 smallest_factor (S(S m1)) = (S(S m1))).
672 intro.elim H.apply H2.
673 apply divides_smallest_factor_n.
674 apply (trans_lt ? (S O)).unfold lt. apply le_n.assumption.
675 apply lt_SO_smallest_factor.
679 (* a number n > O is prime iff its smallest factor is n *)
680 definition primeb \def \lambda n:nat.
682 [ O \Rightarrow false
685 [ O \Rightarrow false
686 | (S q) \Rightarrow eqb (smallest_factor (S(S q))) (S(S q))]].
689 theorem example4 : primeb (S(S(S O))) = true.
690 normalize.reflexivity.
693 theorem example5 : primeb (S(S(S(S(S(S O)))))) = false.
694 normalize.reflexivity.
697 theorem example6 : primeb (S(S(S(S((S(S(S(S(S(S(S O)))))))))))) = true.
698 normalize.reflexivity.
701 theorem example7 : primeb (S(S(S(S(S(S((S(S(S(S((S(S(S(S(S(S(S O))))))))))))))))))) = true.
702 normalize.reflexivity.
705 theorem primeb_to_Prop: \forall n.
707 [ true \Rightarrow prime n
708 | false \Rightarrow \lnot (prime n)].
710 apply (nat_case n).simplify.unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_O (S O) H1).
711 intro.apply (nat_case m).simplify.unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_n (S O) H1).
714 match eqb (smallest_factor (S(S m1))) (S(S m1)) with
715 [ true \Rightarrow prime (S(S m1))
716 | false \Rightarrow \lnot (prime (S(S m1)))].
717 apply (eqb_elim (smallest_factor (S(S m1))) (S(S m1))).
720 apply prime_smallest_factor_n.
721 unfold lt.apply le_S_S.apply le_S_S.apply le_O_n.
723 change with (prime (S(S m1)) \to False).
725 apply prime_to_smallest_factor.
729 theorem primeb_true_to_prime : \forall n:nat.
730 primeb n = true \to prime n.
733 [ true \Rightarrow prime n
734 | false \Rightarrow \lnot (prime n)].
736 apply primeb_to_Prop.
739 theorem primeb_false_to_not_prime : \forall n:nat.
740 primeb n = false \to \lnot (prime n).
743 [ true \Rightarrow prime n
744 | false \Rightarrow \lnot (prime n)].
746 apply primeb_to_Prop.
749 theorem decidable_prime : \forall n:nat.decidable (prime n).
750 intro.unfold decidable.
753 [ true \Rightarrow prime n
754 | false \Rightarrow \lnot (prime n)] \to (prime n) \lor \lnot (prime n)).
755 apply Hcut.apply primeb_to_Prop.
756 elim (primeb n).left.apply H.right.apply H.
759 theorem prime_to_primeb_true: \forall n:nat.
760 prime n \to primeb n = true.
762 cut (match (primeb n) with
763 [ true \Rightarrow prime n
764 | false \Rightarrow \lnot (prime n)] \to ((primeb n) = true)).
765 apply Hcut.apply primeb_to_Prop.
766 elim (primeb n).reflexivity.
767 absurd (prime n).assumption.assumption.
770 theorem not_prime_to_primeb_false: \forall n:nat.
771 \lnot(prime n) \to primeb n = false.
773 cut (match (primeb n) with
774 [ true \Rightarrow prime n
775 | false \Rightarrow \lnot (prime n)] \to ((primeb n) = false)).
776 apply Hcut.apply primeb_to_Prop.
778 absurd (prime n).assumption.assumption.