1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
16 include "sets/sets.ma".
18 ninductive le (n: nat) : nat → CProp[0] ≝
20 | le_S: ∀m. le n m → le n (S m).
22 interpretation "natural 'less or equal to'" 'leq x y = (le x y).
23 interpretation "natural 'neither less nor equal to'" 'nleq x y = (Not (le x y)).
25 ndefinition lt ≝ λn,m. S n ≤ m.
27 interpretation "natural 'less than'" 'lt x y = (lt x y).
28 interpretation "natural 'not less than'" 'nless x y = (Not (lt x y)).
30 nlemma le_O_n: ∀n. le O n.
31 #n; nelim n [ napply le_n | #n'; #H; napply le_S; nassumption ]
35 naxiom le_S_S: ∀n,m. le n m → le (S n) (S m).
36 naxiom le_S_S_to_le: ∀n,m. le (S n) (S m) → le n m.
37 naxiom lt_Sn_m: ∀n,m. lt (S n) m → lt n m.
38 naxiom lt_to_le: ∀n,m. lt n m → le n m.
39 naxiom lt_le_trans: ∀n,m,p. lt n m → le m p → lt n p.
41 nlemma lt_O_Sn: ∀n. lt O (S n).
42 #n; napply le_S_S; napply le_O_n.
45 ndefinition Nat_: nat → qpowerclass NAT.
46 #n; napply mk_qpowerclass
48 | #x; #x'; #H; nrewrite < H; napply mk_iff; #K; nassumption (* refl non va *) ]