1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "logic/connectives.ma".
16 include "properties/relations.ma".
19 notation "hvbox(a break = \sub \ID b)" non associative with precedence 45
22 notation > "hvbox(a break =_\ID b)" non associative with precedence 45
23 for @{ cic:/matita/logic/equality/eq.ind#xpointer(1/1) ? $a $b }.
25 interpretation "ID eq" 'eqID x y = (cic:/matita/logic/equality/eq.ind#xpointer(1/1) ? x y).
28 nrecord setoid : Type[1] ≝
30 eq: equivalence_relation carr
33 interpretation "setoid eq" 'eq t x y = (eq_rel ? (eq t) x y).
35 notation > "hvbox(a break =_0 b)" non associative with precedence 45
36 for @{ eq_rel ? (eq ?) $a $b }.
38 interpretation "setoid symmetry" 'invert r = (sym ???? r).
39 notation ".= r" with precedence 50 for @{'trans $r}.
40 interpretation "trans" 'trans r = (trans ????? r).
42 nrecord unary_morphism (A,B: setoid) : Type[0] ≝
44 prop1: ∀a,a'. eq ? a a' → eq ? (fun1 a) (fun1 a')
47 nrecord binary_morphism (A,B,C:setoid) : Type[0] ≝
49 prop2: ∀a,a',b,b'. eq ? a a' → eq ? b b' → eq ? (fun2 a b) (fun2 a' b')
52 notation "† c" with precedence 90 for @{'prop1 $c }.
53 notation "l ‡ r" with precedence 90 for @{'prop2 $l $r }.
54 notation "#" with precedence 90 for @{'refl}.
55 interpretation "prop1" 'prop1 c = (prop1 ????? c).
56 interpretation "prop2" 'prop2 l r = (prop2 ???????? l r).
57 interpretation "refl" 'refl = (refl ???).