1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (******************* SETS OVER TYPES *****************)
17 include "logic/connectives.ma".
19 nrecord powerclass (A: Type[0]) : Type[1] ≝ { mem: A → CProp[0] }.
21 interpretation "mem" 'mem a S = (mem ? S a).
22 interpretation "powerclass" 'powerset A = (powerclass A).
23 interpretation "subset construction" 'subset \eta.x = (mk_powerclass ? x).
25 ndefinition subseteq ≝ λA.λU,V.∀a:A. a ∈ U → a ∈ V.
26 interpretation "subseteq" 'subseteq U V = (subseteq ? U V).
28 ndefinition overlaps ≝ λA.λU,V.∃x:A.x ∈ U ∧ x ∈ V.
29 interpretation "overlaps" 'overlaps U V = (overlaps ? U V).
31 ndefinition intersect ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ x ∈ V }.
32 interpretation "intersect" 'intersects U V = (intersect ? U V).
34 ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }.
35 interpretation "union" 'union U V = (union ? U V).
37 ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }.
39 ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }.
41 ndefinition full_set: ∀A. Ω^A ≝ λA.{ x | True }.
43 nlemma subseteq_refl: ∀A.∀S: Ω^A. S ⊆ S.
46 nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U.
49 include "properties/relations1.ma".
51 ndefinition seteq: ∀A. equivalence_relation1 (Ω^A).
53 [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S)
56 | #S; #T; #U; *; #H1; #H2; *; /4/]
59 include "sets/setoids1.ma".
61 (* this has to be declared here, so that it is combined with carr *)
62 ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?).
64 ndefinition powerclass_setoid: Type[0] → setoid1.
68 include "hints_declaration.ma".
70 alias symbol "hint_decl" = "hint_decl_Type2".
71 unification hint 0 ≔ A ⊢ carr1 (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) ≡ Ω^A.
73 (************ SETS OVER SETOIDS ********************)
75 include "logic/cprop.ma".
77 nrecord ext_powerclass (A: setoid) : Type[1] ≝
78 { ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso...
79 forse lo si vorrebbe dichiarato con un target più lasco
80 ma la sintassi :> non lo supporta *)
81 ext_prop: ∀x,x':A. x=x' → (x ∈ ext_carr) = (x' ∈ ext_carr)
84 notation > "𝛀 ^ term 90 A" non associative with precedence 70
85 for @{ 'ext_powerclass $A }.
87 notation "Ω term 90 A \atop ≈" non associative with precedence 70
88 for @{ 'ext_powerclass $A }.
90 interpretation "extensional powerclass" 'ext_powerclass a = (ext_powerclass a).
92 ndefinition Full_set: ∀A. 𝛀^A.
93 #A; @[ napply A | #x; #x'; #H; napply refl1]
95 ncoercion Full_set: ∀A. ext_powerclass A ≝ Full_set on A: setoid to ext_powerclass ?.
97 ndefinition ext_seteq: ∀A. equivalence_relation1 (𝛀^A).
98 #A; @ [ napply (λS,S'. S = S') ] /2/.
101 ndefinition ext_powerclass_setoid: setoid → setoid1.
105 unification hint 0 ≔ A;
106 R ≟ (mk_setoid1 (𝛀^A) (eq1 (ext_powerclass_setoid A)))
107 (* ----------------------------------------------------- *) ⊢
108 carr1 R ≡ ext_powerclass A.
111 interpretation "prop21 mem" 'prop2 l r = (prop21 (setoid1_of_setoid ?) (ext_powerclass_setoid ?) ? ? ???? l r).
115 ncoercion ext_carr' : ∀A.∀x:ext_powerclass_setoid A. Ω^A ≝ ext_carr
116 on _x : (carr1 (ext_powerclass_setoid ?)) to (Ω^?).
119 nlemma mem_ext_powerclass_setoid_is_morph:
120 ∀A. unary_morphism1 (setoid1_of_setoid A) (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP).
121 #A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S));
122 #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H
123 [ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/.
126 unification hint 0 ≔ A:setoid, x, S;
128 TT ≟ (mk_unary_morphism1 …
129 (λx:setoid1_of_setoid ?.
131 (λS:ext_powerclass_setoid ?. x ∈ S)
132 (prop11 … (mem_ext_powerclass_setoid_is_morph A x)))
133 (prop11 … (mem_ext_powerclass_setoid_is_morph A))),
134 XX ≟ (ext_powerclass_setoid A)
135 (*-------------------------------------*) ⊢
136 fun11 (setoid1_of_setoid A)
137 (unary_morphism1_setoid1 XX CPROP) TT x S
140 nlemma subseteq_is_morph: ∀A. unary_morphism1 (ext_powerclass_setoid A)
141 (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP).
142 #A; napply (mk_binary_morphism1 … (λS,S':𝛀^A. S ⊆ S'));
143 #a; #a'; #b; #b'; *; #H1; #H2; *; /5/.
146 unification hint 0 ≔ A,a,a'
147 (*-----------------------------------------------------------------*) ⊢
148 eq_rel ? (eq A) a a' ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) a a'.
150 nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A.
151 #A; #S; #S'; @ (S ∩ S');
152 #a; #a'; #Ha; @; *; #H1; #H2; @
153 [##1,2: napply (. Ha^-1‡#); nassumption;
154 ##|##3,4: napply (. Ha‡#); nassumption]
157 alias symbol "hint_decl" = "hint_decl_Type1".
159 A : setoid, B,C : ext_powerclass A;
160 R ≟ (mk_ext_powerclass ? (B ∩ C) (ext_prop ? (intersect_is_ext ? B C)))
162 (* ------------------------------------------*) ⊢
163 ext_carr A R ≡ intersect ? (ext_carr ? B) (ext_carr ? C).
165 nlemma intersect_is_morph:
166 ∀A. unary_morphism1 (powerclass_setoid A) (unary_morphism1_setoid1 (powerclass_setoid A) (powerclass_setoid A)).
167 #A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S'));
168 #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/.
171 alias symbol "hint_decl" = "hint_decl_Type1".
173 A : Type[0], B,C : Ω^A;
174 R ≟ (mk_unary_morphism1 …
175 (λS. mk_unary_morphism1 … (λS'.S ∩ S') (prop11 … (intersect_is_morph A S)))
176 (prop11 … (intersect_is_morph A)))
178 R B C ≡ intersect ? B C.
180 interpretation "prop21 ext" 'prop2 l r =
181 (prop11 (ext_powerclass_setoid ?)
182 (unary_morphism1_setoid1 (ext_powerclass_setoid ?) ?) ? ?? l ?? r).
184 nlemma intersect_is_ext_morph:
185 ∀A. unary_morphism1 (ext_powerclass_setoid A)
186 (unary_morphism1_setoid1 (ext_powerclass_setoid A) (ext_powerclass_setoid A)).
187 #A; napply (mk_binary_morphism1 … (intersect_is_ext …));
188 #a; #a'; #b; #b'; #Ha; #Hb; napply (prop11 … (intersect_is_morph A)); nassumption.
193 R ≟ (mk_unary_morphism1 …
194 (λS:ext_powerclass_setoid A.
195 mk_unary_morphism1 ??
196 (λS':ext_powerclass_setoid A.
197 mk_ext_powerclass A (S∩S') (ext_prop A (intersect_is_ext ? S S')))
198 (prop11 … (intersect_is_ext_morph A S)))
199 (prop11 … (intersect_is_ext_morph A))) ,
202 (* ------------------------------------------------------*) ⊢
203 ext_carr A (R B C) ≡ intersect (carr A) BB CC.
206 alias symbol "hint_decl" = "hint_decl_Type2".
208 A : setoid, B,C : 𝛀^A ;
211 C1 ≟ (carr1 (powerclass_setoid (carr A))),
212 C2 ≟ (carr1 (ext_powerclass_setoid A))
214 eq_rel1 C1 (eq1 (powerclass_setoid (carr A))) BB CC ≡
215 eq_rel1 C2 (eq1 (ext_powerclass_setoid A)) B C.
218 A, B : CPROP ⊢ iff A B ≡ eq_rel1 ? (eq1 CPROP) A B.
220 nlemma test: ∀U.∀A,B:𝛀^U. A ∩ B = A →
221 ∀x,y. x=y → x ∈ A → y ∈ A ∩ B.
222 #U; #A; #B; #H; #x; #y; #K; #K2;
223 alias symbol "prop2" = "prop21 mem".
224 alias symbol "invert" = "setoid1 symmetry".
230 nlemma intersect_ok: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A).
235 nwhd in ⊢ (? ? ? % %); @; *; #H1; #H2; @
236 [##1,2: napply (. Ha^-1‡#); nassumption;
237 ##|##3,4: napply (. Ha‡#); nassumption]##]
238 ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; @; #x; nwhd in ⊢ (% → %); #H
239 [ alias symbol "invert" = "setoid1 symmetry".
240 alias symbol "refl" = "refl".
241 alias symbol "prop2" = "prop21".
242 napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption
243 | napply (. ((#‡Ha)‡(#‡Hb))); nassumption ]##]
246 (* unfold if intersect, exposing fun21 *)
247 alias symbol "hint_decl" = "hint_decl_Type1".
249 A : setoid, B,C : ext_powerclass A ⊢
251 (mk_binary_morphism1 …
252 (λS,S':qpowerclass_setoid A.mk_qpowerclass ? (S ∩ S') (mem_ok' ? (intersect_ok ? S S')))
253 (prop21 … (intersect_ok A)))
256 ≡ intersect ? (pc ? B) (pc ? C).
258 nlemma test: ∀A:setoid. ∀U,V:qpowerclass A. ∀x,x':setoid1_of_setoid A. x=x' → x ∈ U ∩ V → x' ∈ U ∩ V.
259 #A; #U; #V; #x; #x'; #H; #p; napply (. (H^-1‡#)); nassumption.
263 ndefinition image: ∀A,B. (carr A → carr B) → Ω^A → Ω^B ≝
264 λA,B:setoid.λf:carr A → carr B.λSa:Ω^A.
265 {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq B) (f x) y}.
267 ndefinition counter_image: ∀A,B. (carr A → carr B) → Ω^B → Ω^A ≝
268 λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}.
270 (******************* compatible equivalence relations **********************)
272 nrecord compatible_equivalence_relation (A: setoid) : Type[1] ≝
273 { rel:> equivalence_relation A;
274 compatibility: ∀x,x':A. x=x' → rel x x'
277 ndefinition quotient: ∀A. compatible_equivalence_relation A → setoid.
281 (******************* first omomorphism theorem for sets **********************)
283 ndefinition eqrel_of_morphism:
284 ∀A,B. unary_morphism A B → compatible_equivalence_relation A.
286 [ @ [ napply (λx,y. f x = f y) ] /2/;
287 ##| #x; #x'; #H; nwhd; alias symbol "prop1" = "prop1".
288 napply (.= (†H)); // ]
291 ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R).
293 [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ]
296 ndefinition quotiented_mor:
297 ∀A,B.∀f:unary_morphism A B.
298 unary_morphism (quotient … (eqrel_of_morphism … f)) B.
299 #A; #B; #f; @ [ napply f ] //.
302 nlemma first_omomorphism_theorem_functions1:
303 ∀A,B.∀f: unary_morphism A B.
304 ∀x. f x = quotiented_mor … (canonical_proj … (eqrel_of_morphism … f) x).
307 alias symbol "eq" = "setoid eq".
308 ndefinition surjective ≝
309 λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:unary_morphism A B.
310 ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y.
312 ndefinition injective ≝
313 λA,B.λS: ext_powerclass A.λf:unary_morphism A B.
314 ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'.
316 nlemma first_omomorphism_theorem_functions2:
317 ∀A,B.∀f: unary_morphism A B.
318 surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)).
321 nlemma first_omomorphism_theorem_functions3:
322 ∀A,B.∀f: unary_morphism A B.
323 injective … (Full_set ?) (quotiented_mor … f).
324 #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption.
327 nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) : Type[0] ≝
328 { iso_f:> unary_morphism A B;
329 f_closed: ∀x. x ∈ S → iso_f x ∈ T;
330 f_sur: surjective … S T iso_f;
331 f_inj: injective … S iso_f
334 nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W.
335 #A; #U; #V; #W; *; #H; #x; *; /2/.
338 nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W.
339 #A; #U; #V; #W; #H; #H1; #x; *; /2/.
342 nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V.
346 nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝
347 { iso_f:> unary_morphism A B;
348 f_closed: ∀x. x ∈ pc A S → fun1 ?? iso_f x ∈ pc B T}.
355 λxxx:isomorphism A B S T.
357 return λxxx:isomorphism A B S T.
359 ∀x_72: mem (carr A) (pc A S) x.
360 mem (carr B) (pc B T) (fun1 A B ((λ_.?) A B S T xxx) x)
361 with [ mk_isomorphism _ yyy ⇒ yyy ] ).