1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (******************* SETS OVER TYPES *****************)
17 include "logic/connectives.ma".
19 nrecord powerclass (A: Type[0]) : Type[1] ≝ { mem: A → CProp[0] }.
21 interpretation "mem" 'mem a S = (mem ? S a).
22 interpretation "powerclass" 'powerset A = (powerclass A).
23 interpretation "subset construction" 'subset \eta.x = (mk_powerclass ? x).
25 ndefinition subseteq ≝ λA.λU,V.∀a:A. a ∈ U → a ∈ V.
26 interpretation "subseteq" 'subseteq U V = (subseteq ? U V).
28 ndefinition overlaps ≝ λA.λU,V.∃x:A.x ∈ U ∧ x ∈ V.
29 interpretation "overlaps" 'overlaps U V = (overlaps ? U V).
31 ndefinition intersect ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ x ∈ V }.
32 interpretation "intersect" 'intersects U V = (intersect ? U V).
34 ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }.
35 interpretation "union" 'union U V = (union ? U V).
37 ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }.
39 ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }.
41 ndefinition full_set: ∀A. Ω^A ≝ λA.{ x | True }.
43 nlemma subseteq_refl: ∀A.∀S: Ω^A. S ⊆ S.
44 #A; #S; #x; #H; nassumption.
47 nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U.
48 #A; #S; #T; #U; #H1; #H2; #x; #P; napply H2; napply H1; nassumption.
51 include "properties/relations1.ma".
53 ndefinition seteq: ∀A. equivalence_relation1 (Ω^A).
55 [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S)
56 | #S; @; napply subseteq_refl
57 | #S; #S'; *; #H1; #H2; @; nassumption
58 | #S; #T; #U; *; #H1; #H2; *; #H3; #H4; @; napply subseteq_trans;
59 ##[##2,5: nassumption |##1,4: ##skip |##*: nassumption]##]
62 include "sets/setoids1.ma".
64 (* this has to be declared here, so that it is combined with carr *)
65 ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?).
67 ndefinition powerclass_setoid: Type[0] → setoid1.
68 #A; @[ napply (Ω^A)| napply seteq ]
71 include "hints_declaration.ma".
73 alias symbol "hint_decl" = "hint_decl_Type2".
74 unification hint 0 ≔ A ⊢ carr1 (powerclass_setoid A) ≡ Ω^A.
76 (************ SETS OVER SETOIDS ********************)
78 include "logic/cprop.ma".
80 nrecord qpowerclass (A: setoid) : Type[1] ≝
81 { pc:> Ω^A; (* qui pc viene dichiarato con un target preciso...
82 forse lo si vorrebbe dichiarato con un target più lasco
83 ma la sintassi :> non lo supporta *)
84 mem_ok': ∀x,x':A. x=x' → (x ∈ pc) = (x' ∈ pc)
87 ndefinition Full_set: ∀A. qpowerclass A.
88 #A; @[ napply A | #x; #x'; #H; napply refl1]
90 ncoercion Full_set: ∀A. qpowerclass A ≝ Full_set on A: setoid to qpowerclass ?.
92 ndefinition qseteq: ∀A. equivalence_relation1 (qpowerclass A).
94 [ napply (λS,S'. S = S')
95 | #S; napply (refl1 ? (seteq A))
96 | #S; #S'; napply (sym1 ? (seteq A))
97 | #S; #T; #U; napply (trans1 ? (seteq A))]
100 ndefinition qpowerclass_setoid: setoid → setoid1.
102 [ napply (qpowerclass A)
103 | napply (qseteq A) ]
106 unification hint 0 ≔ A ⊢
107 carr1 (qpowerclass_setoid A) ≡ qpowerclass A.
109 nlemma mem_ok: ∀A. binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) CPROP.
111 [ napply (λx,S. x ∈ S)
112 | #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H;
113 ##[ napply Hb1; napply (. (mem_ok' …)); ##[##3: napply H| napply Ha^-1;##]
114 ##| napply Hb2; napply (. (mem_ok' …)); ##[##3: napply H| napply Ha;##]
120 A : setoid, x, S ⊢ (mem_ok A) x S ≡ mem A S x.
122 nlemma subseteq_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) CPROP.
124 [ napply (λS,S'. S ⊆ S')
125 | #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #H
126 [ napply (subseteq_trans … a)
127 [ nassumption | napply (subseteq_trans … b); nassumption ]
128 ##| napply (subseteq_trans … a')
129 [ nassumption | napply (subseteq_trans … b'); nassumption ] ##]
132 nlemma intersect_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A).
136 | #a; #a'; #Ha; nwhd in ⊢ (? ? ? % %); @; *; #H1; #H2; @
137 [##1,2: napply (. (mem_ok' …)^-1) [##3,6: nassumption |##2,5: nassumption |##*: ##skip]
138 ##|##3,4: napply (. (mem_ok' …)) [##1,3,4,6: nassumption |##*: ##skip]##]##]
139 ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; @; #x; nwhd in ⊢ (% → %); #H
140 [ napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption
141 | napply (. ((#‡Ha)‡(#‡Hb))); nassumption ]##]
144 (* unfold if intersect, exposing fun21 *)
145 alias symbol "hint_decl" = "hint_decl_Type1".
147 A : setoid, B,C : qpowerclass A ⊢
148 pc A (intersect_ok A B C) ≡ intersect ? (pc ? B) (pc ? C).
150 (* hints can pass under mem *) (* ??? XXX why is it needed? *)
151 unification hint 0 ≔ A,B,x ;
153 (*---------------------*) ⊢
154 mem A B x ≡ mem A C x.
156 nlemma test: ∀A:setoid. ∀U,V:qpowerclass A. ∀x,x':setoid1_of_setoid A. x=x' → x ∈ U ∩ V → x' ∈ U ∩ V.
157 #A; #U; #V; #x; #x'; #H; #p; napply (. (H^-1‡#)); nassumption.
160 ndefinition image: ∀A,B. (carr A → carr B) → Ω^A → Ω^B ≝
161 λA,B:setoid.λf:carr A → carr B.λSa:Ω^A.
162 {y | ∃x. x ∈ Sa ∧ eq_rel (carr B) (eq B) (f x) y}.
164 ndefinition counter_image: ∀A,B. (carr A → carr B) → Ω^B → Ω^A ≝
165 λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}.
167 (******************* compatible equivalence relations **********************)
169 nrecord compatible_equivalence_relation (A: setoid) : Type[1] ≝
170 { rel:> equivalence_relation A;
171 compatibility: ∀x,x':A. x=x' → rel x x'
172 (* coercion qui non andava per via di un Failure invece di Uncertain
173 ritornato dall'unificazione per il problema:
174 ?[] A =?= ?[Γ]->?[Γ+1]
178 ndefinition quotient: ∀A. compatible_equivalence_relation A → setoid.
182 (******************* first omomorphism theorem for sets **********************)
184 ndefinition eqrel_of_morphism:
185 ∀A,B. unary_morphism A B → compatible_equivalence_relation A.
188 [ napply (λx,y. f x = f y)
189 | #x; napply refl | #x; #y; napply sym | #x; #y; #z; napply trans]
190 ##| #x; #x'; #H; nwhd; napply (.= (†H)); napply refl ]
193 ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R).
195 [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ]
198 ndefinition quotiented_mor:
199 ∀A,B.∀f:unary_morphism A B.
200 unary_morphism (quotient … (eqrel_of_morphism … f)) B.
202 [ napply f | #a; #a'; #H; nassumption]
205 nlemma first_omomorphism_theorem_functions1:
206 ∀A,B.∀f: unary_morphism A B.
207 ∀x. f x = quotiented_mor … (canonical_proj … (eqrel_of_morphism … f) x).
208 #A; #B; #f; #x; napply refl;
211 ndefinition surjective ≝
212 λA,B.λS: qpowerclass A.λT: qpowerclass B.λf:unary_morphism A B.
213 ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y.
215 ndefinition injective ≝
216 λA,B.λS: qpowerclass A.λf:unary_morphism A B.
217 ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'.
219 nlemma first_omomorphism_theorem_functions2:
220 ∀A,B.∀f: unary_morphism A B.
221 surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)).
222 #A; #B; #f; nwhd; #y; #Hy; @ y; @ [ napply I | napply refl]
223 (* bug, prova @ I refl *)
226 nlemma first_omomorphism_theorem_functions3:
227 ∀A,B.∀f: unary_morphism A B.
228 injective … (Full_set ?) (quotiented_mor … f).
229 #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption.
232 nrecord isomorphism (A) (B) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝
233 { iso_f:> unary_morphism A B;
234 f_closed: ∀x. x ∈ S → iso_f x ∈ T;
235 f_sur: surjective … S T iso_f;
236 f_inj: injective … S iso_f