3 include "topology/igft.ma".
5 ntheorem axiom_cond: âA:Ax.âa:A.âi:đ a.a â đ a i.
6 #A; #a; #i; @2 i; #x; #H; @; napply H;
9 nlemma hint_auto1 : âA,U,V. (âx.x â U â x â V) â cover_set cover A U V.
13 alias symbol "covers" (instance 1) = "covers".
14 alias symbol "covers" (instance 2) = "covers set".
15 alias symbol "covers" (instance 3) = "covers".
16 ntheorem transitivity: âA:Ax.âa:A.âU,V. a â U â U â V â a â V.
17 #A; #a; #U; #V; #aU; #UV; nelim aU; nauto depth=4;
20 ndefinition emptyset: âA.Ί^A â ÎťA.{x | False}.
22 notation "â
" non associative with precedence 90 for @{ 'empty }.
23 interpretation "empty" 'empty = (emptyset ?).
25 naxiom EM : âA:Ax.âa:A.âi_star.(a â đ a i_star) ⨠( a â đ a i_star).
27 alias symbol "covers" = "covers".
29 âA:Ax.âa:A. a â â
â âi. ÂŹ a â đ a i.
32 ##| #b; #i_star; #IH1; #IH2; ncases (EM ⌠b i_star); nauto;
36 ninductive eq1 (A : Type[0]) : Type[0] â CProp[0] â
39 notation "hvbox( a break âź b)" non associative with precedence 40
42 interpretation "eq between types" 'eqT a b = (eq1 a b).
44 ninductive unit : Type[0] â one : unit.
46 nrecord uAx : Type[1] â {
48 with_ : âa:uax_.đ a âź unit
51 ndefinition uax : uAx â Ax.
52 #A; @ (uax_ A) (Îťx.unit); #a; #_;
53 napply (đ a ?); nlapply one; ncases (with_ A a); nauto;
56 ncoercion uax : âu:uAx. Ax â uax on _u : uAx to Ax.
62 @; ##[ @ A (Îť_.unit) (Îťa,x.S a); ##| #_; @; ##]
65 alias id "S" = "cic:/matita/ng/topology/igft/S.fix(0,0,1)".
66 unification hint 0 â ;
68 (* -------------- *) â˘
73 âA:uAx.âa:A. a â â
â ÂŹ a â đ a one.
76 ##| #b; #i_star; #IH1; #IH2; #H3; nlapply (IH2 ⌠H3); nauto;
80 ndefinition Z : Ί^axs â { x | x â â
}.
82 ntheorem cover_monotone: âA:Ax.âa:A.âU,V.U â V â a â U â a â V.
83 #A; #a; #U; #V; #HUV; #H; nelim H; nauto depth=4;
86 ntheorem th3_1: ÂŹâa:axs.Z â S a ⧠S a â Z.
89 nlapply (axiom_cond ⌠a one); #AxCon; nchange in AxCon with (a â S a);
90 napply (cover_monotone ⌠AxCon); nassumption; ##] #H;
91 ncut (a â â
); ##[ napply (transitivity ⌠H); nwhd in match Z; nauto; ##] #H1;
92 ncut (ÂŹ a â S a); ##[ napply (col2_4 ⌠H1); ##] #H2;
93 ncut (a â S a); ##[ napply ZSa; napply H1; ##] #H3;
99 naxiom phi : nat â nat â nat.
101 notation > "Ď" non associative with precedence 90 for @{ 'phi }.
102 interpretation "phi" 'phi = phi.
104 notation < "Ď a i" non associative with precedence 90 for @{ 'phi2 $a $i}.
105 interpretation "phi2" 'phi2 a i = (phi a i).
106 notation < "Ď a" non associative with precedence 90 for @{ 'phi1 $a }.
107 interpretation "phi2" 'phi1 a = (phi a).
109 ndefinition caxs : uAx.
110 @; ##[ @ nat (Îť_.unit); #a; #_; napply { x | Ď a x = O } ##| #_; @; ##]
114 alias id "S" = "cic:/matita/ng/topology/igft/S.fix(0,0,1)".
115 unification hint 0 â ;
117 (* -------------- *) â˘
120 naxiom h : nat â nat.
122 alias symbol "eq" = "leibnitz's equality".
123 alias symbol "eq" = "setoid1 eq".
124 alias symbol "covers" = "covers".
125 alias symbol "eq" = "leibnitz's equality".
126 naxiom Ph : âx.h x = O \liff x â â
.
129 âA:Ax.âU,V.U â V â V â U â âa:A.a â U â a â V.
130 #A; #U; #V; #UV; #VU; #a; #aU; nelim aU; nauto;
133 ntheorem th_ch3: ÂŹâa:caxs.âx.Ď a x = h x.
135 ncut (a â { x | x â â
}); ##[
136 napply (replace_char ⌠{ x | h x = O }); ##[ ##1,2: #x; ncases (Ph x); nauto; ##]
137 napply (replace_char ⌠{ x | Ď a x = O }); ##[##1,2: #x; nrewrite > (H x); nauto; ##]
138 napply (axiom_cond ⌠a one); ##] #H1;
139 ncut (a â â
); ##[ napply (transitivity ⌠H1); nauto; ##] #H2;
140 nlapply (col2_4 âŚH2); #H3;
141 ncut (a â đ a one); ##[
142 nnormalize; ncases (Ph a); nrewrite > (H a); nauto; ##] #H4;