1 set "baseuri" "cic:/matita/TPTP/BOO034-1".
2 include "logic/equality.ma".
3 (* Inclusion of: BOO034-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : BOO034-1 : TPTP v3.1.1. Released v2.2.0. *)
6 (* Domain : Boolean Algebra (Ternary) *)
7 (* Problem : Ternary Boolean Algebra Single axiom is sound. *)
8 (* Version : [MP96] (equality) axioms. *)
9 (* English : We show that that an equation (which turns out to be a single *)
10 (* axiom for TBA) can be derived from the axioms of TBA. *)
11 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
12 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
13 (* Source : [McC98] *)
14 (* Names : TBA-1-a [MP96] *)
15 (* Status : Unsatisfiable *)
16 (* Rating : 0.21 v3.1.0, 0.11 v2.7.0, 0.27 v2.6.0, 0.33 v2.5.0, 0.00 v2.2.1 *)
17 (* Syntax : Number of clauses : 6 ( 0 non-Horn; 6 unit; 1 RR) *)
18 (* Number of atoms : 6 ( 6 equality) *)
19 (* Maximal clause size : 1 ( 1 average) *)
20 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
21 (* Number of functors : 9 ( 7 constant; 0-3 arity) *)
22 (* Number of variables : 13 ( 2 singleton) *)
23 (* Maximal term depth : 5 ( 2 average) *)
25 (* -------------------------------------------------------------------------- *)
26 (* ----Include ternary Boolean algebra axioms *)
27 (* Inclusion of: Axioms/BOO001-0.ax *)
28 (* -------------------------------------------------------------------------- *)
29 (* File : BOO001-0 : TPTP v3.1.1. Released v1.0.0. *)
30 (* Domain : Algebra (Ternary Boolean) *)
31 (* Axioms : Ternary Boolean algebra (equality) axioms *)
32 (* Version : [OTTER] (equality) axioms. *)
34 (* Refs : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
35 (* : [Win82] Winker (1982), Generation and Verification of Finite M *)
36 (* Source : [OTTER] *)
39 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 0 RR) *)
40 (* Number of literals : 5 ( 5 equality) *)
41 (* Maximal clause size : 1 ( 1 average) *)
42 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
43 (* Number of functors : 2 ( 0 constant; 1-3 arity) *)
44 (* Number of variables : 13 ( 2 singleton) *)
45 (* Maximal term depth : 3 ( 2 average) *)
46 (* Comments : These axioms appear in [Win82], in which ternary_multiply_1 is *)
47 (* shown to be independant. *)
48 (* : These axioms are also used in [Wos88], p.222. *)
49 (* -------------------------------------------------------------------------- *)
50 (* -------------------------------------------------------------------------- *)
51 (* -------------------------------------------------------------------------- *)
52 (* ----Denial of single axiom: *)
53 theorem prove_single_axiom:
62 \forall inverse:\forall _:Univ.Univ.
63 \forall multiply:\forall _:Univ.\forall _:Univ.\forall _:Univ.Univ.
64 \forall H0:\forall X:Univ.\forall Y:Univ.eq Univ (multiply X Y (inverse Y)) X.
65 \forall H1:\forall X:Univ.\forall Y:Univ.eq Univ (multiply (inverse Y) Y X) X.
66 \forall H2:\forall X:Univ.\forall Y:Univ.eq Univ (multiply X X Y) X.
67 \forall H3:\forall X:Univ.\forall Y:Univ.eq Univ (multiply Y X X) X.
68 \forall H4:\forall V:Univ.\forall W:Univ.\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (multiply V W X) Y (multiply V W Z)) (multiply V W (multiply X Y Z)).eq Univ (multiply (multiply a (inverse a) b) (inverse (multiply (multiply c d e) f (multiply c d g))) (multiply d (multiply g f e) c)) b
71 autobatch paramodulation timeout=100.
75 (* -------------------------------------------------------------------------- *)