1 set "baseuri" "cic:/matita/TPTP/GRP188-1".
2 include "logic/equality.ma".
3 (* Inclusion of: GRP188-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : GRP188-1 : TPTP v3.1.1. Bugfixed v1.2.1. *)
6 (* Domain : Group Theory (Lattice Ordered) *)
7 (* Problem : Consequence of lattice theory *)
8 (* Version : [Fuc94] (equality) axioms. *)
10 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
11 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
14 (* Status : Unsatisfiable *)
15 (* Rating : 0.00 v2.0.0 *)
16 (* Syntax : Number of clauses : 16 ( 0 non-Horn; 16 unit; 1 RR) *)
17 (* Number of atoms : 16 ( 16 equality) *)
18 (* Maximal clause size : 1 ( 1 average) *)
19 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
20 (* Number of functors : 7 ( 3 constant; 0-2 arity) *)
21 (* Number of variables : 33 ( 2 singleton) *)
22 (* Maximal term depth : 3 ( 2 average) *)
23 (* Comments : ORDERING LPO greatest_lower_bound > least_upper_bound > *)
24 (* inverse > product > identity > a > b *)
25 (* : This is a standardized version of the problem that appears in *)
27 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
28 (* -------------------------------------------------------------------------- *)
29 (* ----Include equality group theory axioms *)
30 (* Inclusion of: Axioms/GRP004-0.ax *)
31 (* -------------------------------------------------------------------------- *)
32 (* File : GRP004-0 : TPTP v3.1.1. Released v1.0.0. *)
33 (* Domain : Group Theory *)
34 (* Axioms : Group theory (equality) axioms *)
35 (* Version : [MOW76] (equality) axioms : *)
36 (* Reduced > Complete. *)
38 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
39 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
43 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
44 (* Number of literals : 3 ( 3 equality) *)
45 (* Maximal clause size : 1 ( 1 average) *)
46 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
47 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
48 (* Number of variables : 5 ( 0 singleton) *)
49 (* Maximal term depth : 3 ( 2 average) *)
50 (* Comments : [MOW76] also contains redundant right_identity and *)
51 (* right_inverse axioms. *)
52 (* : These axioms are also used in [Wos88] p.186, also with *)
53 (* right_identity and right_inverse. *)
54 (* -------------------------------------------------------------------------- *)
55 (* ----For any x and y in the group x*y is also in the group. No clause *)
56 (* ----is needed here since this is an instance of reflexivity *)
57 (* ----There exists an identity element *)
58 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
60 (* ----The operation '*' is associative *)
61 (* -------------------------------------------------------------------------- *)
62 (* ----Include Lattice ordered group (equality) axioms *)
63 (* Inclusion of: Axioms/GRP004-2.ax *)
64 (* -------------------------------------------------------------------------- *)
65 (* File : GRP004-2 : TPTP v3.1.1. Bugfixed v1.2.0. *)
66 (* Domain : Group Theory (Lattice Ordered) *)
67 (* Axioms : Lattice ordered group (equality) axioms *)
68 (* Version : [Fuc94] (equality) axioms. *)
70 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
71 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
72 (* Source : [Sch95] *)
75 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
76 (* Number of literals : 12 ( 12 equality) *)
77 (* Maximal clause size : 1 ( 1 average) *)
78 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
79 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
80 (* Number of variables : 28 ( 2 singleton) *)
81 (* Maximal term depth : 3 ( 2 average) *)
82 (* Comments : Requires GRP004-0.ax *)
83 (* -------------------------------------------------------------------------- *)
84 (* ----Specification of the least upper bound and greatest lower bound *)
85 (* ----Monotony of multiply *)
86 (* -------------------------------------------------------------------------- *)
87 (* -------------------------------------------------------------------------- *)
92 \forall greatest_lower_bound:\forall _:Univ.\forall _:Univ.Univ.
93 \forall identity:Univ.
94 \forall inverse:\forall _:Univ.Univ.
95 \forall least_upper_bound:\forall _:Univ.\forall _:Univ.Univ.
96 \forall multiply:\forall _:Univ.\forall _:Univ.Univ.
97 \forall H0:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
98 \forall H1:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
99 \forall H2:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
100 \forall H3:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
101 \forall H4:\forall X:Univ.\forall Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
102 \forall H5:\forall X:Univ.\forall Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
103 \forall H6:\forall X:Univ.eq Univ (greatest_lower_bound X X) X.
104 \forall H7:\forall X:Univ.eq Univ (least_upper_bound X X) X.
105 \forall H8:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
106 \forall H9:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
107 \forall H10:\forall X:Univ.\forall Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
108 \forall H11:\forall X:Univ.\forall Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
109 \forall H12:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
110 \forall H13:\forall X:Univ.eq Univ (multiply (inverse X) X) identity.
111 \forall H14:\forall X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound b (least_upper_bound a b)) (least_upper_bound a b)
114 autobatch paramodulation timeout=100;
118 (* -------------------------------------------------------------------------- *)