1 set "baseuri" "cic:/matita/TPTP/GRP494-1".
2 include "logic/equality.ma".
3 (* Inclusion of: GRP494-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : GRP494-1 : TPTP v3.1.1. Released v2.6.0. *)
6 (* Domain : Group Theory *)
7 (* Problem : Axiom for group theory, in double division and identity, part 2 *)
8 (* Version : [McC93] (equality) axioms. *)
10 (* Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr *)
13 (* Status : Unsatisfiable *)
14 (* Rating : 0.00 v2.6.0 *)
15 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR) *)
16 (* Number of atoms : 5 ( 5 equality) *)
17 (* Maximal clause size : 1 ( 1 average) *)
18 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
19 (* Number of functors : 5 ( 2 constant; 0-2 arity) *)
20 (* Number of variables : 7 ( 0 singleton) *)
21 (* Maximal term depth : 5 ( 2 average) *)
22 (* Comments : A UEQ part of GRP079-1 *)
23 (* -------------------------------------------------------------------------- *)
24 theorem prove_these_axioms_2:
27 \forall double_divide:\forall _:Univ.\forall _:Univ.Univ.
28 \forall identity:Univ.
29 \forall inverse:\forall _:Univ.Univ.
30 \forall multiply:\forall _:Univ.\forall _:Univ.Univ.
31 \forall H0:\forall A:Univ.eq Univ identity (double_divide A (inverse A)).
32 \forall H1:\forall A:Univ.eq Univ (inverse A) (double_divide A identity).
33 \forall H2:\forall A:Univ.\forall B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
34 \forall H3:\forall A:Univ.\forall B:Univ.\forall C:Univ.eq Univ (double_divide (double_divide identity A) (double_divide (double_divide (double_divide B C) (double_divide identity identity)) (double_divide A C))) B.eq Univ (multiply identity a2) a2
37 auto paramodulation timeout=100.
41 (* -------------------------------------------------------------------------- *)