1 set "baseuri" "cic:/matita/TPTP/GRP580-1".
2 include "logic/equality.ma".
3 (* Inclusion of: GRP580-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : GRP580-1 : TPTP v3.1.1. Bugfixed v2.7.0. *)
6 (* Domain : Group Theory (Abelian) *)
7 (* Problem : Axiom for Abelian group theory, in double div and id, part 4 *)
8 (* Version : [McC93] (equality) axioms. *)
10 (* Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr *)
13 (* Status : Unsatisfiable *)
14 (* Rating : 0.00 v2.7.0 *)
15 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR) *)
16 (* Number of atoms : 5 ( 5 equality) *)
17 (* Maximal clause size : 1 ( 1 average) *)
18 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
19 (* Number of functors : 6 ( 3 constant; 0-2 arity) *)
20 (* Number of variables : 7 ( 0 singleton) *)
21 (* Maximal term depth : 6 ( 2 average) *)
22 (* Comments : A UEQ part of GRP102-1 *)
23 (* Bugfixes : v2.7.0 - Grounded conjecture *)
24 (* -------------------------------------------------------------------------- *)
25 theorem prove_these_axioms_4:
29 \forall double_divide:\forall _:Univ.\forall _:Univ.Univ.
30 \forall identity:Univ.
31 \forall inverse:\forall _:Univ.Univ.
32 \forall multiply:\forall _:Univ.\forall _:Univ.Univ.
33 \forall H0:\forall A:Univ.eq Univ identity (double_divide A (inverse A)).
34 \forall H1:\forall A:Univ.eq Univ (inverse A) (double_divide A identity).
35 \forall H2:\forall A:Univ.\forall B:Univ.eq Univ (multiply A B) (double_divide (double_divide B A) identity).
36 \forall H3:\forall A:Univ.\forall B:Univ.\forall C:Univ.eq Univ (double_divide (double_divide A (double_divide (double_divide (double_divide B A) C) (double_divide B identity))) (double_divide identity identity)) C.eq Univ (multiply a b) (multiply b a)
39 auto paramodulation timeout=600.
43 (* -------------------------------------------------------------------------- *)