2 include "logic/equality.ma".
3 (* Inclusion of: RNG023-6.p *)
4 (* -------------------------------------------------------------------------- *)
5 (* File : RNG023-6 : TPTP v3.1.1. Released v1.0.0. *)
6 (* Domain : Ring Theory (Alternative) *)
7 (* Problem : Left alternative *)
8 (* Version : [Ste87] (equality) axioms. *)
9 (* Theorem formulation : In terms of associators *)
11 (* Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin *)
12 (* : [Ste92] Stevens (1992), Unpublished Note *)
13 (* Source : [Ste92] *)
14 (* Names : - [Ste87] *)
15 (* Status : Unsatisfiable *)
16 (* Rating : 0.00 v2.1.0, 0.13 v2.0.0 *)
17 (* Syntax : Number of clauses : 16 ( 0 non-Horn; 16 unit; 1 RR) *)
18 (* Number of atoms : 16 ( 16 equality) *)
19 (* Maximal clause size : 1 ( 1 average) *)
20 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
21 (* Number of functors : 8 ( 3 constant; 0-3 arity) *)
22 (* Number of variables : 27 ( 2 singleton) *)
23 (* Maximal term depth : 5 ( 2 average) *)
25 (* -------------------------------------------------------------------------- *)
26 (* ----Include nonassociative ring axioms *)
27 (* Inclusion of: Axioms/RNG003-0.ax *)
28 (* -------------------------------------------------------------------------- *)
29 (* File : RNG003-0 : TPTP v3.1.1. Released v1.0.0. *)
30 (* Domain : Ring Theory (Alternative) *)
31 (* Axioms : Alternative ring theory (equality) axioms *)
32 (* Version : [Ste87] (equality) axioms. *)
34 (* Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin *)
35 (* Source : [Ste87] *)
38 (* Syntax : Number of clauses : 15 ( 0 non-Horn; 15 unit; 0 RR) *)
39 (* Number of literals : 15 ( 15 equality) *)
40 (* Maximal clause size : 1 ( 1 average) *)
41 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
42 (* Number of functors : 6 ( 1 constant; 0-3 arity) *)
43 (* Number of variables : 27 ( 2 singleton) *)
44 (* Maximal term depth : 5 ( 2 average) *)
46 (* -------------------------------------------------------------------------- *)
47 (* ----There exists an additive identity element *)
48 (* ----Multiplicative zero *)
49 (* ----Existence of left additive additive_inverse *)
50 (* ----Inverse of additive_inverse of X is X *)
51 (* ----Distributive property of product over sum *)
52 (* ----Commutativity for addition *)
53 (* ----Associativity for addition *)
54 (* ----Right alternative law *)
55 (* ----Left alternative law *)
58 (* -------------------------------------------------------------------------- *)
59 (* -------------------------------------------------------------------------- *)
60 theorem prove_left_alternative:
62 \forall add:\forall _:Univ.\forall _:Univ.Univ.
63 \forall additive_identity:Univ.
64 \forall additive_inverse:\forall _:Univ.Univ.
65 \forall associator:\forall _:Univ.\forall _:Univ.\forall _:Univ.Univ.
66 \forall commutator:\forall _:Univ.\forall _:Univ.Univ.
67 \forall multiply:\forall _:Univ.\forall _:Univ.Univ.
70 \forall H0:\forall X:Univ.\forall Y:Univ.eq Univ (commutator X Y) (add (multiply Y X) (additive_inverse (multiply X Y))).
71 \forall H1:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (associator X Y Z) (add (multiply (multiply X Y) Z) (additive_inverse (multiply X (multiply Y Z)))).
72 \forall H2:\forall X:Univ.\forall Y:Univ.eq Univ (multiply (multiply X X) Y) (multiply X (multiply X Y)).
73 \forall H3:\forall X:Univ.\forall Y:Univ.eq Univ (multiply (multiply X Y) Y) (multiply X (multiply Y Y)).
74 \forall H4:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (add X (add Y Z)) (add (add X Y) Z).
75 \forall H5:\forall X:Univ.\forall Y:Univ.eq Univ (add X Y) (add Y X).
76 \forall H6:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
77 \forall H7:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
78 \forall H8:\forall X:Univ.eq Univ (additive_inverse (additive_inverse X)) X.
79 \forall H9:\forall X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
80 \forall H10:\forall X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
81 \forall H11:\forall X:Univ.eq Univ (multiply X additive_identity) additive_identity.
82 \forall H12:\forall X:Univ.eq Univ (multiply additive_identity X) additive_identity.
83 \forall H13:\forall X:Univ.eq Univ (add X additive_identity) X.
84 \forall H14:\forall X:Univ.eq Univ (add additive_identity X) X.eq Univ (associator x x y) additive_identity
87 autobatch paramodulation timeout=100;
91 (* -------------------------------------------------------------------------- *)