]> matita.cs.unibo.it Git - helm.git/blob - helm/software/matita/tests/TPTP/Veloci/ROB002-1.p.ma
added tests for paramod
[helm.git] / helm / software / matita / tests / TPTP / Veloci / ROB002-1.p.ma
1 set "baseuri" "cic:/matita/TPTP/ROB002-1".
2 include "logic/equality.ma".
3 (* Inclusion of: ROB002-1.p *)
4 (* -------------------------------------------------------------------------- *)
5 (*  File     : ROB002-1 : TPTP v3.1.1. Released v1.0.0. *)
6 (*  Domain   : Robbins Algebra *)
7 (*  Problem  : --X = X => Boolean *)
8 (*  Version  : [Win90] (equality) axioms. *)
9 (*  English  : If --X = X then the algebra is Boolean. *)
10 (*  Refs     : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
11 (*           : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
12 (*  Source   : [Win90] *)
13 (*  Names    : Lemma 2.1 [Win90] *)
14 (*  Status   : Unsatisfiable *)
15 (*  Rating   : 0.00 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.13 v2.0.0 *)
16 (*  Syntax   : Number of clauses     :    5 (   0 non-Horn;   5 unit;   1 RR) *)
17 (*             Number of atoms       :    5 (   5 equality) *)
18 (*             Maximal clause size   :    1 (   1 average) *)
19 (*             Number of predicates  :    1 (   0 propositional; 2-2 arity) *)
20 (*             Number of functors    :    4 (   2 constant; 0-2 arity) *)
21 (*             Number of variables   :    8 (   0 singleton) *)
22 (*             Maximal term depth    :    6 (   3 average) *)
23 (*  Comments : Commutativity, associativity, and Huntington's axiom  *)
24 (*             axiomatize Boolean algebra. *)
25 (* -------------------------------------------------------------------------- *)
26 (* ----Include axioms for Robbins algebra  *)
27 (* Inclusion of: Axioms/ROB001-0.ax *)
28 (* -------------------------------------------------------------------------- *)
29 (*  File     : ROB001-0 : TPTP v3.1.1. Released v1.0.0. *)
30 (*  Domain   : Robbins algebra *)
31 (*  Axioms   : Robbins algebra axioms *)
32 (*  Version  : [Win90] (equality) axioms. *)
33 (*  English  :  *)
34 (*  Refs     : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
35 (*           : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
36 (*  Source   : [OTTER] *)
37 (*  Names    : Lemma 2.2 [Win90] *)
38 (*  Status   :  *)
39 (*  Syntax   : Number of clauses    :    3 (   0 non-Horn;   3 unit;   0 RR) *)
40 (*             Number of literals   :    3 (   3 equality) *)
41 (*             Maximal clause size  :    1 (   1 average) *)
42 (*             Number of predicates :    1 (   0 propositional; 2-2 arity) *)
43 (*             Number of functors   :    2 (   0 constant; 1-2 arity) *)
44 (*             Number of variables  :    7 (   0 singleton) *)
45 (*             Maximal term depth   :    6 (   3 average) *)
46 (*  Comments :  *)
47 (* -------------------------------------------------------------------------- *)
48 (* -------------------------------------------------------------------------- *)
49 (* -------------------------------------------------------------------------- *)
50 theorem prove_huntingtons_axiom:
51  \forall Univ:Set.
52 \forall a:Univ.
53 \forall add:\forall _:Univ.\forall _:Univ.Univ.
54 \forall b:Univ.
55 \forall negate:\forall _:Univ.Univ.
56 \forall H0:\forall X:Univ.eq Univ (negate (negate X)) X.
57 \forall H1:\forall X:Univ.\forall Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
58 \forall H2:\forall X:Univ.\forall Y:Univ.\forall Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
59 \forall H3:\forall X:Univ.\forall Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b
60 .
61 intros.
62 auto paramodulation timeout=600.
63 try assumption.
64 print proofterm.
65 qed.
66 (* -------------------------------------------------------------------------- *)